DAYTON[®] SUPERIOR

Product	Page	Product
Bag Ties	57	MetalStrip
Bar Lock® L-Series Coupler	54	Miscellaneous Products
Bar Lock Structural Steel Connector	55	Plain End Anchor
Bar Lock S/CA-Series Coupler	54	Position Coupler
Bar Lock Transition Couplers	55	QuickStrip
Chemicals		Rebar Safety Cap
Dayton Shear Resistance (DRS) Products	45	Rebar Supports
DBR Coupler		Sleeve-Lock™ Double-Ended Gr
DBR Setting Splice Bar	26	Straight Bar
Double End Anchor	50	Sure-Guard Rebar Protective Ca
Double-Ended Dowel Bar Splicer	14, 15	Taper-Lock®
Double-Ended Dowel-In	13	Taper-Lock Column Connector.
Dowel Bar Replacement Installation	16	Taper-Lock Flange Coupler
Dowel Bar Splicer System	11-18	Taper-Lock End Anchor Disc
Dowel-In	13	Taper-Lock Positional Coupler
End Anchorage System	49	Taper-Lock Standard Coupler
Female End Anchor	51	Taper-Lock Transitional Coupler
Formliners	64	Taper-Lock Weldable Coupler
Foundation Rail with Studs	45	Tie Wire
General and Technical Information	3	Threaded Plastic Setting Plug
Headed Dowel Bar Splicer	17	Threaded Splicing Systems
Headed Dowel-In	17	Threaded Steel Setting Plug
Hook Bar	27	Transition Coupler
Hooked Dowel Bar Splicer	14, 15	Two-Piece End Anchor
Hooked Dowel-In	13	US/MC-SAE Coupler
Lockshear Bolt System	53	US/MC-SAE Extended Threaded
Magna Jaw	57	US/MC-SAE Standard Threaded
Male End Anchor	52	Welding Half Coupler
		Welding Stud

Product	Page
MetalStrip	58
Miscellaneous Products	57
Plain End Anchor	49
Position Coupler	24
QuickStrip	58
Rebar Safety Cap	
Rebar Supports	61
Sleeve-Lock™ Double-Ended Grout Sleeve	43
Straight Bar	27
Sure-Guard Rebar Protective Cap	57
Taper-Lock®	
Taper-Lock Column Connector	39
Taper-Lock Flange Coupler	36
Taper-Lock End Anchor Disc	
Taper-Lock Positional Coupler	34
Taper-Lock Standard Coupler	30
Taper-Lock Transitional Coupler	32
Taper-Lock Weldable Coupler	40
Tie Wire	57
Threaded Plastic Setting Plug	58
Threaded Splicing Systems	11
Threaded Steel Setting Plug	60
Transition Coupler	21
Two-Piece End Anchor	50
US/MC-SAE Coupler	19
US/MC-SAE Extended Threaded Splice Bar	20
US/MC-SAE Standard Threaded Splice Bar	20
Welding Half Coupler	22
Welding Stud	23

_		_		_		_
Page	Item	Page	Item	Page	Item	Page
55	D-101	13	D-107	24	D-330	34
55	D-101-A	14, 15	D-108	17	D-340	36
55	D-102	13	D-108-A	17	D-350	37
55	D-102-A	14, 15	D-110	19	D-351	38
55	D-103	13	D-111	20	D-352	39
26	D-103-A	14, 15	D-112	20	D-360	40
27	D-104	13	D-140	43	D-410	43
27	D-104-A	14, 15	D-158	48	F-72	60
27	D-105	21	D-250	52, 53	F-74	60
56	D-106	22	D-310	30	P-154	60
56	D-106-S	23	D-320	32		
					.55 D-101 .13 D-107 .24 .55 D-101-A .14, 15 D-108 .17 .55 D-102 .13 D-108-A .17 .55 D-102-A .14, 15 D-110 .19 .55 D-103 .13 D-111 .20 .26 D-103-A .14, 15 D-112 .20 .27 D-104 .13 D-140 .43 .27 D-104-A .14, 15 D-158 .48 .27 D-105 .21 D-250 .52, 53	Page Item Page Item

Notes and Sketches

General, Technical and Chemical Information

Safety Notes and Product Application
Dayton Superior strives to ensure that all products supplied from its manufacturing plants meet or exceed the safety requirements inherent in the proper use of its products. However, the performance of a product can be greatly affected by the manner in which the product is used. It is imperative that the user be instructed in the proper installation and use of the products displayed in this handbook prior to job application.

Product production runs are constantly sampled and tested to assure the user a high standard of quality. Samples are tested in Dayton Superior test facilities or at independent testing laboratories. The safe working loads listed in this handbook were determined from the results of the testing program and other industry sources.

Dayton Superior publishes the safe working loads and the associated minimum safety factors of its products and strongly advises that the minimum safety factors not be compromised. When there are unusual job conditions, the minimum safety factors must be increased by the user. Refer to the provisions of the American National Standards Institute (ANSI A 10.9), the Occupational Safety and Health Administration (OSHA) Act, Part 1910, and the American Concrete Institute (ACI) Recommended Practice for Concrete Formwork (ACI 347) and ACI 318 Building Code when considering product safety factors.

Dayton Superior Technical Services

The Dayton Superior technical departments are well staffed with trained personnel to service inquiries, take-offs and details for the users of Dayton Superior quality splicing accessories.

Technical Services: 877.266.7732

Construction Liquids

FORM RELEASE AGENTS
Bio-Release EF
Clean Strip™ (J-1-A) Clean Strip (J-1-A CA) Clean Strip (J-1) Clean Strip (J-1 Light) Clean Strip Citrus (J-1-C) Clean Strip Ultra Light (J-3 Light) Liner Coat (J-4 LC)

BOND BREAKERS

Cure-Lift EF Maxi Tilt F Sure-Lift WB (J-6 WB) Sure-Lift™ (J-6) Sure-Lift FD (J-6 FD) Super Maxi Tilt

CURING COMPOUNDS

Clear Dissipating Cure EF Day-Chem City White Cure (J-8) Day-Chem Rez Cure (J-11-W) Day-Chem White Pigmented Cure - W (J-9-A) Day-Chem White Pigmented Cure (J-10-W) DSSCC Clear Resin Cure DSSCC Resin Cure with Dye DSSCC White Resin Cure DSSCC White Wax CRD 300 DSSCC White Wax Cure White Dissipating Cure EF

CURE & SEALS

Cure & Seal 309 EF Cure & Seal 1315 EF Day-Chem Cure & Seal™ (J-21 CP)
Day-Chem Cure & Seal 1315 (J-22 U.V.) Day-Chem Cure & Seal U.V. 30% (J-23 U.V.) General Purpose Cure & Seal (J-20 U.V.) Safe Cure & Seal (J-18) Safe Cure & Seal 30% (J-19)

SEALERS

Day-Chem Aggre-Gloss™ (J-25) Day-Chem Aggre-Gloss OTC (J-25 OTC) Day-Chem Aggregloss Non-Gloss (J-25 Non-Gloss)
Day-Chem Tuf Seal™ (J-35)
Day-Chem Tuf Seal OTC (J-35 OTC) Superior Pro Super Seal Ultra Seal 30 EF

WATER REPELLENTS

Weather Worker™ WB (J-26-WB)
Weather Worker WB Heavy Duty (J-27-WB) Weather Worker S-40 (J-29) Weather Worker S-100 (J-29-A) Weather Worker S-100 (J-29-WB)

LIQUID DENSIFIERS/

Crete-Cure Concentrate (J-12) Day-Chem Sil-Cure™ (J-13) Day-Chem Hardener™ (J-15) Day-Chem Sure Hard™ (J-17)

EPOXIES

Sure-Anchor Epoxy[™] (J-50) Sure-Anchor I[™] (J-51) Sure-Anchor All Weather Epoxy (J-51 AW) Resi-Bond™ (J-58) Resi-Bond (J-58 LPL) Sure-Inject (J-56 SLV) Sure Level™ Epoxy (J-57) Sure Grip Epoxy Grout Turbo Grout Epoxy Poxy-Chock Rapid Resin Repair Splash Zone Epoxy Rebar Epoxy Spray (J-62)

POLYMER FLOOR COATINGS

Spec Cote 100[™] Spec Cote 100 Clear¹ Spec Cote 100 CR[™] . Spec Cote Urethane™ Spec Cote WB™

SURFACE RETARDERS

Face-Off™ Manufactured by Grace Top-Cast™ Manufactured by Grace

JOINT SEALANTS / JOINT FILLERS

Perma 230 SL Poxyfil™ (J-52 Prison-Loc Jointfill™

EVAPORATION REDUCERS

Sure-Film (J-74 Sure Film RTU (J-74 RTU

LATEX BONDING AGENTS /

Day-Chem Ad Bond (J-40)™ Day-Chem CI Ad Bond (J-40CI) LeveLayer™ Bonding Agent (J-42) Superior Concrete Bonder (J-41)

CLEANERS AND STRIPPERS

Citrus Peel (J-48) Destructo Green Bean Clean

LEED / GREEN

Bio-Release EF Clear Dissipating Cure EF Cure & Seal 1315 EF Cure & Seal 309 EF Cure-Lift EF Ultra Seal 30 EF White Dissipating Cure EF

Construction Powders

CONCRETE REPAIR

Ankertite[™] **Architectural Finish** Civil/Structural FPX Civil/Structural VO CM 2000 Day-Chem Perma Patch™ HD-25 HD-45 HD-50™ Rapid Resin Repair Re-Crete™ 5 Minute Set Re-Crete 20 Minute Set Re-Crete Light 5 Minute Patch Re-Crete Light 20 Minute Patch Perma Patch V/O Perma Patch F/P Polyfast™ FS Polyfast LPL SnaPlug Thin Resurfacer™

DAMPPROOFING/WATERPROOFING

Seal Coat™ 1000 Smooth Coat™ Water Stop

GROUTS (NON-SHRINK)

1107 Advantage Grout Multi-Purpose Grout Sure-Grip Epoxy Grout (J-55 HES) Sure-Grip Ferro Grout Sure-Grip Grout Dri-Pak™ Sure-Grip High Performance Grout™ Sure-Grip UW Grout Turbo Grout™ HP-10 Turbo Grout HP-12 Turbo Grout LT-12 Turbo Grout Epoxy TC 1.4 Geothermal Grout

FLOOR LEVELERS

EconoLevel Level Topping White LeveLayer Levelayer MT LeveLayer Primer J-42™ Sure Finish" Sure Patch™ Topping' Topping EXT™ Underlayment Tool Kit

HARDENERS AND INDUSTRIAL TOPPINGS

Emery Non-Slip Emery Tuff™ **Emery Tuff Top** Ferro Tuff™ Ferro Tuff LR Ferro Tuff Non-Rusting Ferro Tuff Top Quartz Tuff™

General and Technical Information

Table 1.1 Reinforcing Bar Data

	Reinforcing Bars Size Designations and Nominal Dimensions									
Bar	Size Designat	ion	Noi	minal Dimensi	ons	Ultimate Minimum Capacity 1.5 _V				
US	US Metric CN (mm) (M)		Diameter (inches)	Area (inches²)	Weight (lbs/ft)	Pounds				
#4	[13]	[10]	0.500	0.20	0.688	18,000				
#5	[16]	[15]	0.625	0.31	1.043	27,900				
#6	[19]	[20]	0.750	0.44	1.502	39,600				
#7	[22]	_	0.875	0.60	2.044	54,000				
#8	[25]	[25]	1.000	0.79	2.670	71,700				
#9	[29]	[30]	1.128	1.00	3.400	90,000				
#10	[32]	_	1.270	1.27	4.303	114,300				
#11	[36]	[35]	1.410	1.56	5.313	140,400				
#14	[43]	[45]	1.693	1.693 2.25 7.		202,500				
#18	[57]	[55]	2.257	4.00	13.600	360,000				

^{*}Rebar size is based on the number of eighths of an inch included in the nominal diameter of the bar.

Note: The nominal dimensions of a deformed rebar are equivalent to those of a plain, round bar having the same weight (mass) per foot (meter) as the deformed rebar.

Nearly all reinforcing bars currently produced in the USA are marked with the numbers 13, 16, etc., to designate bar sizes. These bar size numbers correspond to the traditional designations 4, 5, etc., as shown in the accompanying table.

ACI 318-02 still list the bar sizes traditionally using #3 - #18 designations. The tables in this manual are typically designated #3 [#10] or simply use the traditional designations.

Table 1.2 Mechanical Requirements for Standard ASTM Deformed Reinforcing Bars*

Type of Steel and ASTM Designation	Bar Nos. Range	Grade ¹	Minimum ² Yield Strength, psi	Minimum Tensile Strength, psi	Minimum Percentage Elongation in 8 in.	Cool Bend Test ³ Pin Diameter (d=nominal diameter of specimen)
	3-6	40	40,000	70,000	#311 #4, #5, #612	#3, #4, #53-1/2d #65d
Billet-Steel A615	3-11, 14, 18	60	60,000	90,000	#3, #4, #5, #69 #7, #88 #9, #10, #11, #14, #187	#3, #4, #53-1/2d #6, #7, #85d #9, #10, #117d #14, #18 (90')9d
	6-11, 14, 18	75	75,000	100,000	#6, #7, #87 #9, #10, #11, #14, #186	#6, #7, #85d #9, #10, #117d #14, #18 (90")9d
Low-Alloy Steel A706	3-11, 14, 18	60	60,000 ⁴	80,000 ⁵	#3, #4, #5, #614 #7, #8, #9, #10, #1112 #14, #1810	#3, #4, #53d #6, #7, #84d #9, #10, #116d #14, #188d

^{*} For the mechanical requirements of rail-steel and axle-steel bars, see ASTM specifications A616 and A617, respectively.

¹ Minimum yield designation (KSI).

² Yield point or yield strength. See ASTM specifications.

³ Test bends 180°, unless noted otherwise.

⁴ Maximum yield strength 78,000 psi (ASTM A706 only).

⁵ Tensile Strength shall not be less than 1.25 times the actual yield strength (ASTM A706 only).

General and Technical Information

Table 1.3 Mechanical Splice ACI and ICC Code Requirements

Mechanical Splice ACI & ICC Code Requirements									
ASTM Bar Specified Specified Mechanical Splice Requirement - psi									
Bar Type	Grade	Type 1	Type 2						
A706	60	60,000	80,000	75,000	80,000				
A615	40	40,000	60,000	50,000	60,000				
A615	60	60,000	90,000	75,000	90,000				
A615 75 75,000 100,000 93,750									

Mechanical Splice Requirement -

ACI 318 Chapters 12 and 21 state the requirements for mechanical splices. They are as follows:

Type 1 Mechanical Splice shall develop in tension and compression as required at least 125% of the specified yield of the bar.

Example: For ASTM A615 Grade 60 bar: 1.25 X 60,000psi = 75,000psi

Therefore, a splice test exceeding 75,000 psi meets the Type 1 requirement for A615 Grade 60 ba

Type 2 Mechanical Splice shall conform to Type 1 requirements and develop 100% of the specified ultimate strength of the bar being spliced. Example: For ASTM A615 Grade 60 bar: 1.00 X 90,000psi = 90,000psi

Therefore, a splice test exceeding 90,000 psi meets the Type 1 and Type 2 requirement for A615 Grade 60 bar.

Table 1.4 Deformation
Requirements for
Standard ASTM Deformed
Reinforcing Bars

Bar Si	ize Design	ation	Naw Avenage	May Ayerana	Maximum*	
US	Metric (mm)	CN (M)	Max. Average Spacing, inc.	Max. Average Height, in.	Gap, in.	
#3	[10]		0.262	0.015	0.143	
#4	[13]	[10]	0.350	0.020	0.191	
#5	[16]	[15]	0.437	0.028	0.239	
#6	[19]	[20]	0.525	0.038	0.286	
#7	[22]	_	0.612	0.044	0.334	
#8	[25]	[25]	0.700	0.050	0.383	
#9	[29]	[30]	0.790	0.056	0.431	
#10	[32]	_	0.889	0.064	0.487	
#11	[36]	[35]	0.987	0.071	0.540	
#14	[43]	[45]	1.185	0.085	0.648	
#18	[57]	[55]	0.58	0.102	0.864	

^{*}Chord of 12.5% of nominal perimeter

Table 1.5 Chemical Composition Requirements for Standard ASTM Deformed Reinforcing Bars

Type of Steel			Element								
and ASTM Designation	Condition*	Carbon (C)	Manganese (Mn)	Phosphorus (P)	Sulphur (S)	Silicon (Si)	Copper (Cu)	Nickel (Ni)	Chromium (Cr)	Molybdenum (Mo)	Vanadium (V)
Dillot Ctool	1	Х	Х	Х	Х						
Billet-Steel A615	2			0.06%							
AOIO	3			0.075%							
Low-Alloy	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Steel A706	2	0.30%	1.50%	0.035%	0.045%	0.50%					
	3	0.33%	1.56%	0.043%	0.053%	0.55%					

^{*}CONDITION DEFINITIONS:

^{1.} Analysis required of these elements for each heat.

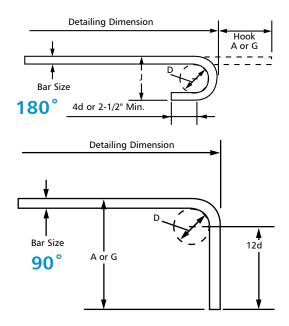
^{2.} Maximum allowable chemical content for each heat.

^{3.} Maximum allowable chemical content for finished bar.

General and Technical Information

Table 1.6 Grade 60 Rebar

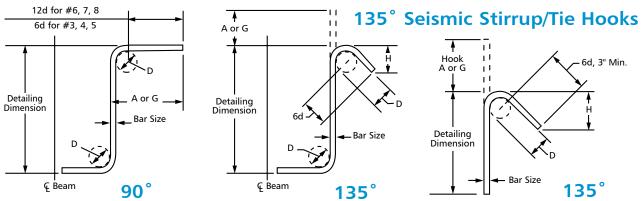
ACI Compression Development and Lap Splice Lengths for f_c = 3,000 psi to 5,000 psi


De	Bar Size esignatio	n	Compression	on Developme per f' _C	ent Lengths	Compression Lap Splice	
US	Metric (mm)	CN (M)	f' _C = f' _C = f' _C = 3,000 psi 5,000 psi			Length	
#3	[10]	_	9	8	8	12	
#4	[13]	[10]	11	10	9	15	
#5	[16]	[15]	14	12	12	19	
#6	[19]	[20]	17	15	14	23	
#7	[22]	_	19	17	16	27	
#8	[25]	[25]	22	19	18	30	
#9	[29]	[30]	25	22	21	34	
#10	[32]	_	28	24	23	38	
#11	[36]	[35]	31	27	26	43	
#14	[43]	[45]	37	32	31	N/A	
#18	[57]	[55]	50	43	41	N/A	

Notes:

- Tabulated values are based on Grade 60 reinforcing bars and normal-weight concrete.
- Compression development lengths and compression lap splice lengths are based on ACI 318-02, Sections 12.3 and 12.16, respectively. Lengths are in inches.
- For compression development lengths, if bars are enclosed in spirals or ties conforming to ACI 318-02, Section 12.3.3(b), then a modification factor of 0.75 may be applied but the resulting length must not be less than 8 in.
- 4. For compression lap splice lengths:
 - a. If bars are enclosed in a tied-reinforced compression member convorming to ACI 318-02, Section 12.17.2.4, then a modification factor of 0.83 may be applied but the resulting length must not be less than 12 in.
 - b. If bars are enclosed in a spirally-reinforced compression member conforming to ACI 318-02, Section 12.17.2.5, then a modification factor of 0.75 may be applied but the resulting length must not be less than 12 in.
 - c. The tabulated lengths are applicable for all concrete strengths of at least 3,000 psi.
- 5. ACI 318-02 does not allow lap splices of #14 [#43] and #18 [#57] bars.

Table 1.7 Recommended End Hooks All Grades: D = Finished bend diameter


D	Bar Size Designation			180°	90° Hooks	
US	Metric (mm)	CN (M)	(in.)	A or G	J	A or G
#3	[10]	_	21/2"	5"	3"	6"
#4	[13]	[10]	3"	6"	4"	8"
#5	[16]	[15]	33/4"	7"	5"	10"
#6	[19]	[20]	41/2"	8"	6"	1'-0"
#7	[22]	_	51/4"	10"	7"	1'-2"
#8	[25]	[25]	6"	11"	8"	1'-4"
#9	[29]	[30]	91/2"	1'-3"	113/4"	1'-7"
#10	[32]	_	10-3/4"	1'-5"	1'-11/4"	1'-10"
#11	[36]	[35]	12"	1'-7"	1'-23/4"	2'-0"
#14	[43]	[45]	18¾"	2'-3"	1'-93/4"	2'-7"
#18	[57]	[55]	24"	3'-0"	2'-41/2"	3'-5"

General and Technical Information

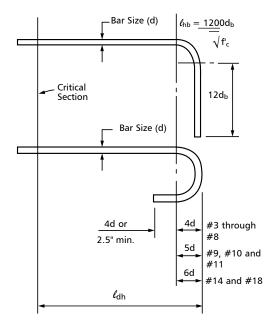
Recommended Industry Practice for Stirrup and Tie Hooks

Table 1.8 Stirrup (Ties Similar)

Stirrup and Tie Hook Dimensions All Grades:

D	Bar Size esignatio	n	D	90°	135	;°
us	Metric (mm)	CN (M)	(in.)	A or G	A or G	Н*
#3	[10]	_	11/2"	4"	4"	21/2"
#4	[13]	[10]	2"	41/2"	41/2"	3"
#5	[16]	[15]	21/2"	6"	5-1/2"	33/4"
#6	[19]	[20]	41/2"	1'-0"	8"	41/2"
#7	[22]		51/4"	1'-2"	9"	51/4"
#8	[25]	[25]	6"	1'-4"	101/2"	6"

*H dimension is approximate.


Table 1.9 135° Seismic Stirrup/Tie

Hook Dimensions All Grades: Seismic Stirrup/Tie Hooks

De	Bar Size esignatio	n	135° Seismic Hook			
US	Metric (mm)	CN (M)	D (in.)	A or G	Н*	
#3	[10]	_	11/2"	41/4"	3"	
#4	[13]	[10]	2"	41/2"	3"	
#5	[16]	[15]	21/2"	51/2"	3¾"	
#6	[19]	[20]	41/2"	8"	41/2"	
#7	[22]	_	51/4"	9"	51/4"	
#8	[25]	[25]	6"	101/2"	6"	

*H dimension is approximate

Development $\ell_{\sf dh}$ of Standard Hooks

Table 1.10 ACI Hook Development Lengths for $f_c = 3,000$ to 5,000 psi

В	ar Size Designa	ation	f'c=	f'c=	f'c=
US	Metric (mm)	CN (M)	3,000 psi	4,000 psi	5,000 psi
#3	[10]	_	9	7	7
#4	[13]	[10]	11	10	9
#5	[16]	[15]	14	12	11
#6	[19]	[20]	17	15	13
#7	[22]	_	19	17	15
#8	[25]	[25]	22	19	17
#9	[29]	[30]	25	22	19
#10	[32]	_	28	24	22
#11	[36]	[35]	31	27	24
#14	[43]	[45]	37	32	29
#18	[57]	[55]	50	43	39

Notes:

- 1. Tabulated values are based on Grade 60 reinforcing bars and normal-weight concrete.
- Tension development lengths of standard hooks are based on ACI 318-02, Section 12.5. Lengths are in inches.
- 3. For bar sizes #3 [#10] through #11 [#36] only:
 - a. If concrete cover conforms to ACI 318-02, Section 12.5.3(a), then a modification factor of 0.7 may be applied but the resulting length must not be less than $8d_b$ nor 6 in.
 - b. If hook is enclosed in ties or stirrups conforming to ACI 318-02, Section 12.5.3(b), then a modification factor of 0.8 may be applied but the resulting length must not be less than $8d_b$ nor 6 in.
- 4. For epoxy-coated hooks, multiply the tabulated values by 1.2.

General and Technical Information

Table 1.11 Tension Lap Splice Lengths – Grade 60 Uncoated Bars $f_c = 3,000$ psi or greater, Normal Weight Concrete

DESIGN AND DETAILING DATA - ACI ACI Tension Lap Splice Lengths for f_c = 3,000, 4,000, and 5,000 psi

Bar S	ize Design	ation			f' _C = 3,	000 psi			f'c = 4,	000 psi			f'c = 5,	000 psi	
us	Metric	CN	Lap Class	Тор	Bars	Othe	r Bars	Тор	Bars	Othe	r Bars	Тор	Bars	Othe	r Bars
US	(mm)	(M)		Case 1	Case 2	Case 1	Case 2	Case 1	Case 2	Case 1	Case 2	Case 1	Case 2	Case 1	Case 2
#3	[10]		А	22	32	17	25	19	28	15	22	17	25	13	19
#3	[10]		В	28	42	22	32	24	36	19	28	22	33	17	25
#4	[13]	[10]	Α	29	43	22	33	25	37	19	29	22	33	17	26
#4	[13]	[10]	В	37	56	29	43	32	48	25	37	29	43	22	33
#5	[16]	[15]	А	36	54	28	41	31	47	24	36	28	42	22	32
#5	[10]	[15]	В	47	70	36	54	40	60	31	47	36	54	28	42
#6	[19]	[20]	Α	43	64	33	50	37	56	29	43	33	50	26	38
#0	[19]	[20]	В	56	84	43	64	48	72	37	56	43	65	33	50
#7	[22]		А	63	94	48	72	54	81	42	63	49	73	37	56
π/	[22]		В	81	122	63	94	70	106	54	81	63	94	49	73
#8	[25]	[25]	Α	72	107	55	82	62	93	48	72	55	83	43	64
#0	[23]	[23]	В	93	139	72	107	80	121	62	93	72	108	55	83
#9	[29]	[30]	А	81	121	62	93	70	105	54	81	63	94	48	72
#3	[29]	[30]	В	105	157	81	121	91	136	70	105	81	122	63	94
#10	[32]	_	Α	91	136	70	105	79	118	61	91	70	105	54	81
#10	[32]		В	118	177	91	136	102	153	79	118	91	137	70	105
#11	[36]	[35]	А	101	151	78	116	87	131	67	101	78	117	60	90
#11	[20]	[25]	В	131	196	101	151	113	170	87	131	101	152	78	117
#14	[43]	[45]	N/A	121	181	93	139	105	157	81	121	94	140	72	108
#18	[57]	[55]	N/A	161	241	124	186	139	209	107	161	125	187	96	144

Notes:

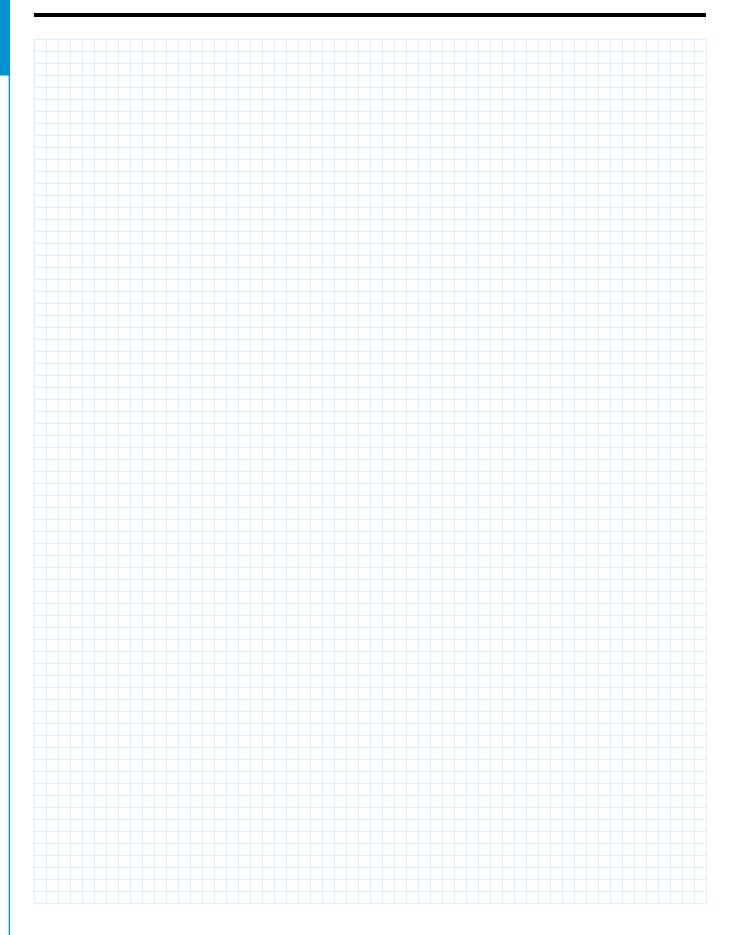
- 1. Tabulated values are based on Grade 60 reinforcing bars and normal-weight concrete.
- 2. Tension development lengths and tension lap splice lengths are based on ACI 318-02, Sections 12.2.2 and 12.15, respectively. Tabulated values for beams or columns are based on transverse reinforcement and concrete cover meeting minimum Code requirements. Lengths are in inches.
- 3. Cases 1 and 2, which depend on the type of structural element, concrete cover, and the center-to-center spacing of the bars, are defined as:

Beams or Columns	Case 1	Cover at least 1d _b and cc. spacing at least 2d _b
	Case 2	Cover less than $1d_b$ or cc. spacing less than $2d_b$
All Others	Case 1	Cover at least $1d_b$ and cc. spacing at least $3d_b$
	Case 2	Cover less than $1d_b$ or cc. spacing less than $3d_b$

- 4. Lap Class A values are the required tension development lengths, ℓ_d ; lap splice lengths are multiples of tension development lengths; Class A 1.0 ℓ_d and Class B = 1.3 ℓ_d (ACE 318-02, Section 12.15.1).
- 5. Lap splices of #14 [#43] or #18 [#57] bars are not permitted. The tabulated values for those bar sizes are the tension development lengths.
- 6. Top bars are horizontal bars with more than 12 inches of concrete cast below the bars.
- 7. For lightweight aggregate concrete, multiply the tabulated values by 1.3; or when f_{ct} is specified, the factor is $6.7\sqrt{f_c'}/f_{ct} \ge 1.0$.
- 8. For epoxy-coated bars, multiply the tabulated values by one of the following factors:

Concrete Cover and Spacing	Top Bars	Other Bars
Cover $< 3d_b$ or cc. spacing $> 7d_b$	1.7 / 1.3 - 1.31	1.50
Cover \leq 3d _b or cc. spacing \leq 7d _b	1.20	1.20

General and Technical Information

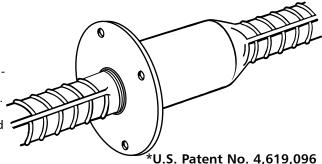

Table 1.11 Metric Conversion Factors

Quantity	To Convert From	То	Multiply By
Length	mile yard foot foot inch	km m m mm mm	1.609 344* 0.9144* 0.3048* 304.8* 25.4*
Area	square mile acre acre square yard square foot square inch	km² m² ha m² m² mm²	2.589 998 4046.873 0.404 687 3 0.836 127 4* 0.092 903 04* 645.16*
Volume	acre foot cubic yard cubic foot cubic foot cubic foot 100 board feet gallon cubic inch cubic inch	m ³ m ³ cm ³ L m ³ L cm ³ mm ³	1233.489 0.764 554 9 0.028 316 85 28 316.85 28.316 85 0.235 973 7 3.785 412 16.387 06 16 387.06
Mass	pound ton (2,000 pounds) kip	kg kg t	0.453 592 4 907.184 7 0.453 592 4
Mass/ Unit Length	pound/foot	kg/m	1.488 164
Mass/Unit Area	pound/foot ²	kg/m²	4.882 428
Mass Density	pound/foot ³	kg/m ³	16.018 46
Force	pound kip	N kN	4.448 222 4.448 222
Force/ Unit Length	pound/foot kip/foot	N/m kN/m	14.593 90 14.593 90
Pressure, Stress	pound/foot ² kip/foot ² pound/inch ² kip/inch ² pound/inch ² kip/inch ² kip/inch ²	Pa kPa kPa MPa N/mm² N/mm²	47.880 26 47.880 26 6.894 757 6.894 757 0.006 895 6.894 757
Moment, Torque	foot-pound foot-kip	N•m kN•m	1.355 818 1.355 818
Moment of Mass	pound-foot	kg•m	0.138 255 0
Moment of Inertia	pound-foot ²	kg•m²	0.042 140 11
Second Moment of Inertia	inch ⁴	mm ⁴	416 231.4
Section Modulus	inch ³	mm ³	16 387.06
Temperature	°F	°C	(°F-32)5/9
Plane Angle	degree	rad	0.017 453 29

Note: Asterisk denotes exact number.

Notes and Sketches

Dowel Bar Splicer System*


ICC Evaluation Report No. 4028

The Dayton Superior Dowel Bar Splicer System is a two-piece, standard mechanical splicing technique (splicing bars of equal size) that eliminates protruding dowels. Typical applications include splicing reinforcement bars in monolithic structures, rebar anchorages, future expansion, and dowel bar substitution at construction joints.

The components of the system, the Splicer and Dowel-In, are manufactured from standard grade 60 rebar material. Basic fabrication consists of forging and threading operations. No welding or machining is required and the threading operation does not reduce the nominal cross-sectional area of the bar. The completed splice (joined Splicer and Dowel-In) obtains ultimate bar strengths and meets or exceeds all existing code requirements including 160% fy or 95% of bar actual tensile requirements as identified by ICC acceptance criteria AC 133.

System Advantages

The patented Dowel Bar Splicer System has been engineered, tested and proven to meet or exceed all field standards and design/engineering practices. The System is easy to use and readily identified as rebar material. The easy installation requires no special tools or machinery and simplifies the forming operations. There are no "extras," such as wedges, nuts, collars or couplers required and routine cutting, bending, etc., can be easilyhandled in the field, if required.

The Dayton Superior Dowel Bar Splicer System Advantages:

- Strong
- Safe
- Easy to Use
- Eliminates Protruding Dowels
- Improves Forming Costs
- Reduces Forming and Stripping Hassles
- Saves Forms By Eliminating Drilling Holes
- · No Forming Required

System Compliance

The Dowel Bar Splicer System complies with the following standards/specifications:

- International Conference of Building Officials (ICC Report #4028).
- City of Los Angeles Research Report RR 24518.
- American Concrete Institute (ACI Standard 318).
- · State Departments of Transportation.
- Corps of Engineers (Specification CW03210).

Typical Splicing Specification

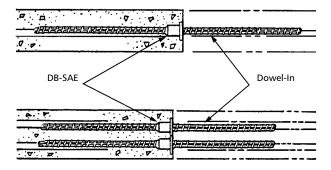
The Dayton Superior Dowel Bar Splicer System, consisting of the Dowel Bar Splicer and Dowel-In, shall be used in splicing of rebar. The Dowel Bar Splicer shall be forged from ASTM A-615 grade 60 deformed rebar material, free of external welding and machining. It shall be furnished with an integral nailing flange and threaded with UNC or UN thread to a depth equal to the nominal thread diameter. The Dowel-In shall be fabricated from ASTM A-615 grade 60 deformed rebar material with thread corresponding to the Splicer. The completed splice shall meet 160% fy exceeding tensile requirements of American Concrete Institute Specification 318, Building Code Requirements for Reinforced Concrete and the Corps of Engineers Specification CW03210, Civil Works Construction Guide Specification for Steel Bars, Welded Steel Wire Fabric and Accessories for Concrete Reinforcement.

Specific:

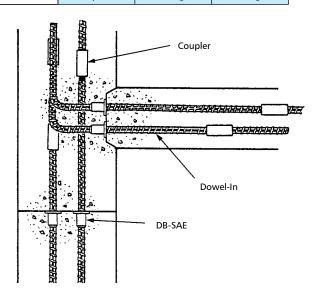
 Mechanical connections shall be Dowel Bar Splice System (DB/DI) parallel threaded couplers as manufactured by Dayton Superior Corporation.

Generic:

The mechanical connection shall meet building code requirements of developing in tension and compression as
required by ______ (insert name here). The mechanical connection shall be the forged and parallel threaded type
coupler manufactured from high quality steel. All couplers shall be installed per the manufacturer's approved procedures.


Recommended Dowel Bar Splicer and Dowel-In Sizes

	Specif	ied or R	equired D	owel Bar			Recomm	ended Do	wel Bar Sp	licer and	Dowel-In	
Bar Size Grade 60 Rebar Loads (lbs.)									Com	Completed Splice (lbs.)		
US	Metric (mm)	CN (M)	Py	1.25 P _y	P _{ult}	System Thread Size*	DB-SAE Bar Size	Dowel-In Bar Size	System Stress Area (min.)	Py	1.25 P _y	Minimum P _{ult} Range = 95% F _u Actual or 160% F _y Specified**
#4	[13]	[10]	12,000	15,000	18,000	5/8"-11	#4	#4	.20	12,000	15,000	19,200
#5	[16]	[15]	18,600	23,250	27,900	3/4"-10	#5	#5	.31	18,600	23,250	29,760
#6	[19]	[20]	26,400	33,000	39,600	7/8"-9	#6	#6	.44	26,400	33,000	42,400
#7	[22]	_	36,000	45,000	54,000	1"-8	#7	#7	.60	36,000	45,000	57,600
#8	[25]	[25]	47,400	59,250	71,100	1-1/8"-8	#8	#8	.79	47,400	59,250	75,840
#9	[29]	[30]	60,000	75,000	90,000	1-1/4"-8	#9	#9	1.00	60,000	75,000	96,000
#10	[32]	_	76,200	95,250	114,000	1-7/16"-8	#10	#10	1.27	76,200	95,250	121,920
#11	[36]	[35]	93,600	117,000	140,400	1-9/16"-8	#11	#11	1.56	93,600	117,000	149,760

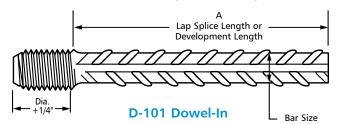

Required Development and Lap Lengths for Grade 60, Uncoated Bottom Reinforcement in Normal Weight Concrete

Application	f' _c psi	#6 and Smaller Bars	#7 and Larger Bars
	3,000	44d _b	55d _b
Clear spacing of bars being developed or spliced not less than d _b , clear cover not less than d _b , and beam stirrups or column ties	4,000	38d _b	47d _b
throughout ℓ d not less than the code minimum	5,000	34d _b	42d _b
Or Clear anguing of have being developed as anlied not less than 2d	6,000	31d _b	39d _b
Clear spacing of bars being developed or spliced not less than 2d _b and clear cover not less than d _b	8,000	27d _b	34d _b
·	10,000	24d _b	30d _b
	3,000	66d _b	82d _b
	4,000	57d _b	71d _b
Other cases	5,000	51d _b	64d _b
04101 04000	6,000	46d _b	58d _b
	8,000	40d _b	50d _b
	10,000	36d _b	45d _b

Typical Threaded Splicing Applications

Typical Dowel Bar Splicer/Dowel-In Applications

 P_y =Minimum Yield Strength of bar. *5/8", 3/4", 7/8" and 1" sizes have UNC Threads. 1-1/8" and larger sizes are equipped with UN Threads.


^{**}Loads shown based on 160% f_y specified.

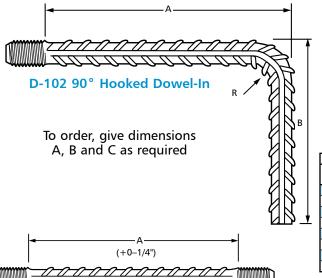
Dowel Bar Splicer System

D-101 Dowel-in, D-102 90° Hooked Dowel-in, D-103 180° Hooked Dowel-in, D-104 Double-Ended Dowel-in

The Dayton Superior Dowel-In is available Straight (D-101), 90° and 180° Hooked (D-102 and D-103) and Double-Ended (D-104). Each is manufactured from grade 60 deformed rebar material and is available in rebar sizes #4 through #11 in plain or epoxy coated finish. The threaded end of the Dowel-In is enlarged by forging, before threading, to ensure that the cross-sectional area of the bar is not reduced by the threading operation. This design feature assures full ultimate strength of the rebar. Dowel-ins are configured to facilitate easy installation and can be easily assembled by hand. On larger projects, such as highway paving, a centrifugal chuck on an electric or air-powered drill motor can be employed to speed installation. See the D-49 Magna Jaw on Page 55.

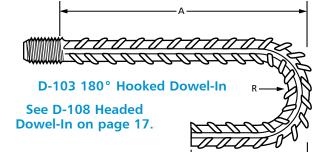
To Order:

Specify: (1) quantity, (2) name, (3) bar size (should be equivalent to the rebar being substituted for on the structural drawings), (4) dimensions required (see below).


Example:

600, D-102 90° Hooked Dowel-Ins, #5 rebar, A=14", B=8"

		pecifie	ed or Require	d Dowel Bar			Reco	mmended D	owel Bar Spli	cer and Dov	wel-In	
	Bar Size Grade 60 Rebar Loads (lbs.)									Com	pleted Spl	ice (lbs.)
US	Met- ric (mm)	CN (M)	Py	1.25 P _y	P _{ult}	System Thread Size*	DB-SAE Bar Size	Dowel-In Bar Size	System Stress Area (min.)	Py	1.25 P _y	Minimum P _{ult} Range = 95% F _u Actual or 160% F _y Specified**
#4	[13]	[10]	12,000	15,000	18,000	5/8"-11	#4	#4	.20	12,000	15,000	19,200
#5	[16]	[15]	18,600	23,250	27,900	3/4"-10	#5	#5	.31	18,600	23,250	29,760
#6	[19]	[20]	26,400	33,000	39,600	7/8"-9	#6	#6	.44	26,400	33,000	42,400
#7	[22]		36,000	45,000	54,000	1"-8	#7	#7	.60	36,000	45,000	57,600
#8	[25]	[25]	47,400	59,250	71,100	1-1/8"-8	#8	#8	.79	47,400	59,250	75,840
#9	[29]	[30]	60,000	75,000	90,000	1-1/4"-8	#9	#9	1.00	60,000	75,000	96,000
#10	[32]	_	76,200	95,250	114,000	1-7/16"-8	#10	#10	1.27	76,200	95,250	121,920
#11	[36]	[35]	93,600	117,000	140,400	1-9/16"-8	#11	#11	1.56	93,600	117,000	149,760


P_y=Minimum Yield Strength of bar. *5/8", 3/4", 7/8" and 1" sizes have UNC Threads. 1-1/8" and larger sizes are equipped with UN Threads.

**Loads shown based on 160% f_y specified.

000000000

D-104 Double-Ended Dowel-In

Bar Size Designation			D-101 Wilnimum	D-104 Minimum	D-104 Minimum
US	Metric (mm)	CN (M)	MFG. Length DI DOWEL INS	Length Double End Dowel Ins.	Length Double End Dowel Ins.
#4	[13]	[10]	9"	4" *	8" **
#5	[16]	[15]	9"	5" *	8" **
#6	[19]	[20]	9 1/4"	6" *	8" **
#7	[22]	_	9 1/4"	7" *	8" **
#8	[25]	[25]	15 1/2"	8" *	14" **
#9	[29]	[30]	15 1/2"	9" *	14" **
#10	[32]	_	15 3/4"	10" *	14" **
#11	[36]	[35]	16"	11" *	14" **

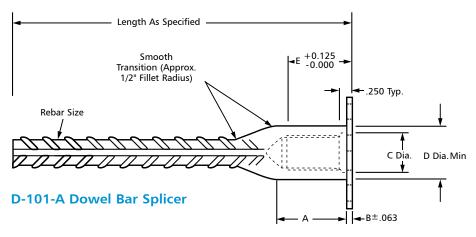
NOTE: To be manufactured as Sinale End

Tolerance on Bending Plus 0 / Minus 1" on "A" Dimension

** Plus thread each end.

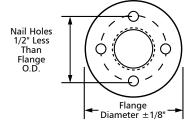
Dowel Bar Splicer System

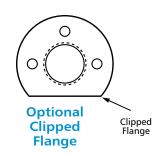
D-101-A Straight Dowel Bar Splicer DB-SAE, D-102-A 90° Hooked Dowel Bar Splicer, D-103-A 180° Hooked Dowel Bar Splicer, D-104-A Double-Ended Dowel Bar Splicer


The Dayton Superior Dowel Bar Splicer is a one-piece unit, integrally forged from ASTM A615 grade 60 deformed rebar material. The splicers are available in #4 through #11 rebar sizes to be used in conjunction with the corresponding size dowel-in to accomplish a mechanical splice designed to achieve 160% of specified yield (full mechanical ultimate).

The splicer can be furnished straight (D-101-A) cut to length, 90° and 180° hooked (D-102-A and D-103-A) and double-ended (D-104-A) in plain or epoxy coated finish. The splicer can also be special-ordered with a reduced diameter washer flange or with the washer flange clipped (in more than one direction, if required) to provide adequate concrete cover, or to avoid interference.

The D-104-A Double-Ended Dowel Bar Splicer is used to establish a direct load path through a concrete section, thus avoiding multiple hooked rebar and eliminating rebar congestion. The double-ended unit can be configured in a "U" shape for special applications.

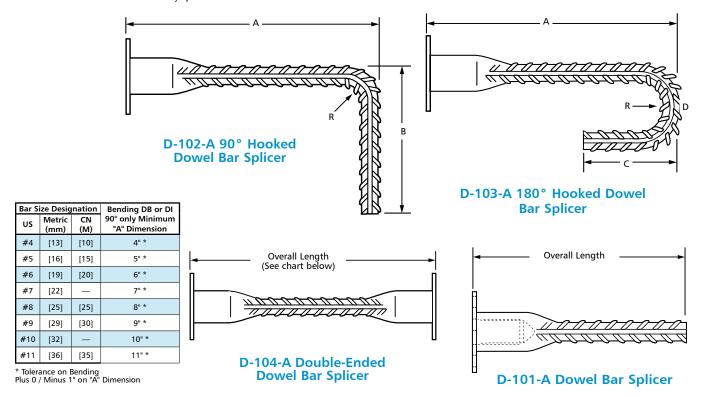

Bar Si	ze Design	ation							F1	Minimum Pult Range =
US	Metric (mm)	CN (M)	Thread Size	A	В	С	D	E	Flange Diameter	95% F _u Actual or 160% F _y Specified*
#4	[13]	[10]	5/8"-11 UNC	1-1/8"	1/8"	11/16"	55/64"	1"	1-7/8"	19,200 lbs.
#5	[16]	[15]	3/4"-10 UNC	1-9/16"	1/8"	13/16"	1-3/64"	1-1/8"	2-1/16"	29,760 lbs.
#6	[19]	[20]	7/8"-9 UNC	1-11/16"	1/8"	15/16"	1-15/64"	1-1/4"	2-1/4"	42,400 lbs.
#7	[22]	_	1"-8 UNC	1-27/32"	1/8"	1-1/16"	1-27/64"	1-3/8"	2-7/16"	57,600 lbs.
#8	[25]	[25]	1-1/8"–8 UN	2-1/16"	1/8"	1-3/16"	1-19/32"	1-1/2"	2-5/8"	75,840 lbs.
#9	[29]	[30]	1-1/4"–8 UN	2-3/16"	1/8"	1-5/16"	1-25/32"	1-5/8"	2-13/16"	96,000 lbs.
#10	[32]	_	1-7/16"–8 UN	2-7/16"	1/8"	1-1/2"	2"	1-13/16"	3"	121,920 lbs.
#11	[36]	[35]	1-9/16–8 UN	2-9/16"	1/8"	1-5/8"	2-7/32"	1-15/16"	3-1/4"	149,760 lbs.


^{*}Loads shown based on 160% f_v specified

Bar Si	ze Design	ation	D-101-A
us	Metric	CN	Minimum MFG.
	(mm)	(M)	Length DB-SAE
#4	[13]	[10]	12"
#5	[16]	[15]	14"
#6	[19]	[20]	16"
#7	[22]	_	16"
#8	[25]	[25]	16"
#9	[29]	[30]	16"
#10	[32]		16"
#11	[36]	[35]	16"

NOTE: To be manufactured as Single End

Note: No. 4, 5 and 6 splicers, 18", 24" and 36" long will usually have a stamped metal plug to protect threads; all other sizes will have a plastic cap plug.



Dowel Bar Splicer System

		pecifie	d or Require	d Dowel Bar		Recommended Dowel Bar Splicer and Dowel-In							
	Bar Size Grade 60 Rebar Loads (lbs.)									Completed Splice (lbs.)			
US	Met- ric (mm)	CN (M)	P _y	1.25 P _y	P _{ult}	System Thread Size*	DB-SAE Bar Size	Dowel-In Bar Size	System Stress Area (min.)	P _y	1.25 P _y	Minimum P _{ult} Range = 95% F _u Actual or 160% F _y Specified**	
#4	[13]	[10]	12,000	15,000	18,000	5/8"-11	#4	#4	.20	12,000	15,000	19,200	
#5	[16]	[15]	18,600	23,250	27,900	3/4"-10	#5	#5	.31	18,600	23,250	29,760	
#6	[19]	[20]	26,400	33,000	39,600	7/8"-9	#6	#6	.44	26,400	33,000	42,400	
#7	[22]	_	36,000	45,000	54,000	1"-8	#7	#7	.60	36,000	45,000	57,600	
#8	[25]	[25]	47,400	59,250	71,100	1-1/8"-8	#8	#8	.79	47,400	59,250	75,840	
#9	[29]	[30]	60,000	75,000	90,000	1-1/4"-8	#9	#9	1.00	60,000	75,000	96,000	
#10	[32]	_	76,200	95,250	114,000	1-7/16"-8	#10	#10	1.27	76,200	95,250	121,920	
#11	[36]	[35]	93,600	117,000	140,400	1-9/16"-8	#11	#11	1.56	93,600	117,000	149,760	

P_V=Minimum Yield Strength of bar.

^{**}Loads shown based on 160% f_y specified.

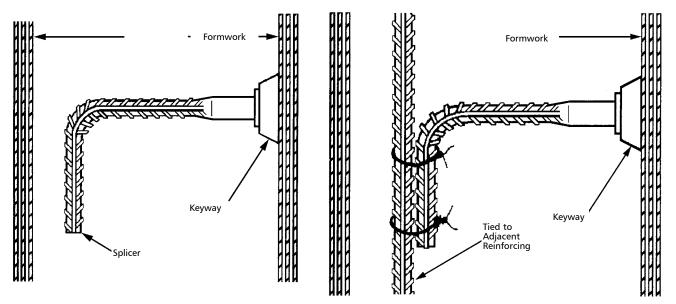
Bar Si	ize Desig	nation	D-104-A	Tolerance Overall
US	Metric (mm)	CN (M)	Double-Ended Min. Lengths	Length
#4	[13]	[10]	12" O.A.	+0 - 3/8"
#5	[16]	[15]	12" O.A.	+0 - 3/8"
#6	[19]	[20]	14" O.A.	+0 - 1/2"
#7	[22]	_	16" O.A.	+0 - 5/8"
#8	[25]	[25]	16" O.A.	+0 - 3/4"
#9	[29]	[30]	16" O.A.	+0 - 1"
#10	[32]	_	16" O.A.	+0 - 1"
#11	[36]	[35]	16" O.A.	+0 - 1"

^{**} Based on barrels forged on each end. For lengths less than minimum - please check with Tremont - we may supply forged DB one end, DI with Coupler and nailer washer other end.

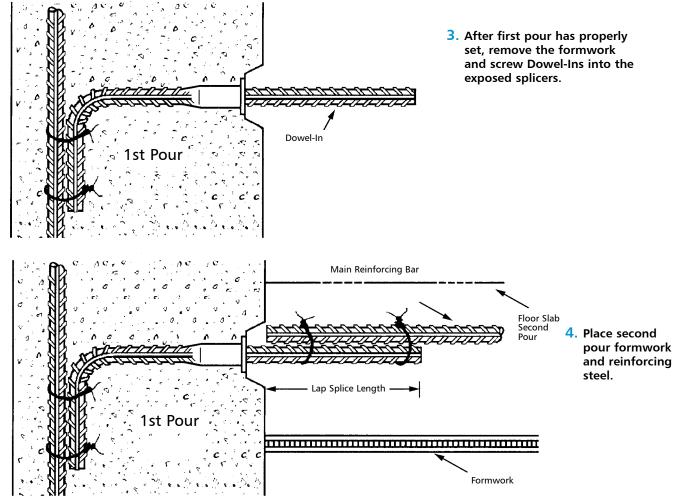
See D-108 Headed Dowel Bar Splicer on page 17.

To Order:

Specify: (1) quantity, (2) name, (3) bar size (should be equivalent to the rebar being substituted for on the structural drawings), (4) dimensions required.

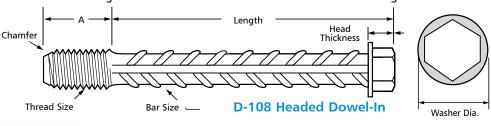

Example:

600, D-101-A Dowel Bar Splicers, #5 rebar, 36" long.


^{*5/8&}quot;, 3/4", 7/8" and 1" sizes have UNC Threads. 1-1/8" and larger sizes are equipped with UN Threads.

Typical Dowel Bar Splicer System Installation

- Set forms, and nail or screw Splicer to form key.
- 2. Place required reinforcing steel.



Dowel Bar Splicer System

D-108 Headed Dowel-In

The Dayton Superior D-108 Headed Dowel-In is a length of grade 60 deformed rebar with one end enlarged by forging and then threaded, and the other end forged into a bolt head configuration. The D-108 Headed Dowel-In is designed for use in congested areas where hooked dowel-ins cannot be utilized. D-108 Dowel-In is available in plain or epoxy coated finish. Standard length of D-108 is 12 times the bar diameter. Other lengths available on request.

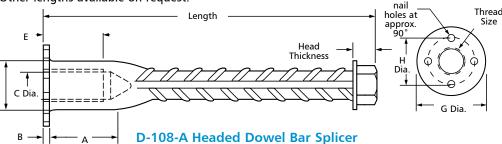
Bar Si	ze Desig	nation	D-108 Minimum
US	Metric (mm)	CN (M)	Length Hex Head Dowel In
#4	[13]	[10]	6" **
#5	[16]	[15]	6" **
#6	[19]	[20]	6" **
#7	[22]	_	6" **
#8	[25]	[25]	10" **
#9	[29]	[30]	10" **
#10	[32]		12" **
#11	[36]	[35]	12" **

^{**} Plus Thread

Bar S	ize Desig	nation	Th					
US	Metric (mm)	CN (M)	Thread Size	Α	Width Across Flats	Washer Diameter	Head Thickness	Ultimate Strength
#4	[13]	[10]	5/8"-11 UNC	7/8"	_	_	1	18,000 lbs.
#5	[16]	[15]	3/4"-10 UNC	1"	7/8"	1-3/16"	7/16"	27,900 lbs.
#6	[19]	[20]	7/8"-9 UNC	1-1/8"	1-1/16"	1-1/2"	7/16"	39,600 lbs.
#7	[22]	_	1"-8 UNC	1-1/4"	1-5/16"	1-3/4"	9/16"	54,000 lbs.
#8	[25]	[25]	1-1/8"–8 UN	1-3/8"	1-5/16"	1-3/4"	9/16"	71,100 lbs.
#9	[29]	[30]	1-1/4"-8 UN	1-1/2"	1-3/4"	2-1/8" - 2-1/4"	3/4"	90,000 lbs.
#10	[32]	_	1-7/16"-8 UN	1-11/16"	1-3/4"	2-1/8" - 2-1/4"	3/4"	114,300 lbs.
#11	[36]	[35]	1-9/16–8 UN	1-13/16"	2-1/16"	2-1/2" - 2-5/8"	7/8"	140,400 lbs.

^{*}Ultimate strength based on 160% f_y specified.

To Order:


Specify: (1) quantity, (2) name, (3) bar size, (4) length.

Example:

500, D-108 Headed Dowel-Ins, #6 rebar x 12" long.

D-108-A Headed Dowel Bar Splicer

The Dayton Superior D-108-A Headed Dowel Bar Splicer is designed to help ease hooked rebar congestion. It has excellent anchorage capacities and can be used for common structural anchoring, such as one-sided forming, light standard support, signs, posts, etc. The D-108-A Splicers are available in sizes #4 through #11 in plain or epoxy coated finish. Standard lengths for D-108-A is 12 times the bar diameter. Other lengths available on request.

To Order:

Specify: (1) quantity, (2) name, (3) bar size, (4) length.

Example:

500, D-108-A Headed Dowel Bar Splicer, #5 rebar x 9" long.

ı	Bar Si	ze Desig	nation	D-108-A Minimum
	US	Metric (mm)	CN (M)	Length DB-SAE-3
	#4	[13]	[10]	5" O.A.
	#5	[16]	[15]	5" O.A.
	#6	[19]	[20]	6" O.A.
	#7	[22]	1	8" O.A.
	#8	[25]	[25]	8" O.A.
	#9	[29]	[30]	9" O.A.
	#10	[32]	_	12" O.A.
	#11	[36]	[35]	12" O.A.

Bar S	ize Desig	nation	Thread						14/: -141-			
US	Metric (mm)	CN (M)	Thread Size	Α	В	С	D	E	Width Across Flats	Washer Diameter	Head Thickness	Ultimate Strength
#4	[13]	[10]	5/8"-11 UNC	1-1/8"	1/8"	11/16"	55/64"	1"	1-1/16"	1-3/8"	1/2"	18,000 lbs.
#5	[16]	[15]	3/4"-10 UNC	1-9/16"	1/8"	13/16"	1-3/64"	1-1/8"	1-5/16"	1-5/8"	1/2"	27,900 lbs.
#6	[19]	[20]	7/8"-9 UNC	1-11/16"	1/8"	15/16"	1-15/64"	1-1/4"	1-5/16"	1-5/8"	5/8"	39,600 lbs.
#7	[22]	_	1"-8 UNC	1-27/32"	1/8"	1-1/16"	1-27/64"	1-3/8"	1-3/8"	1-7/8"	5/8"	54,000 lbs.
#8	[25]	[25]	1-1/8"–8 UN	2-1/16"	1/8"	1-3/16"	1-19/32"	1-1/2"	1-3/8"	1-7/8"	5/8"	71,100 lbs.
#9	[29]	[30]	1-1/4"–8 UN	2-3/16"	1/8"	1-5/16"	1-25/32"	1-5/8"	1-3/4"	2-1/8" — 2-1/4"	3/4"	90,000 lbs.
#10	[32]	_	1-7/16"–8 UN	2-7/16"	1/8"	1-1/2"	2"	1-13/16"	1-3/4"	2-1/8" — 2-1/4"	3/4"	114,300 lbs.
#11	[36]	[35]	1-9/16–8 UN	2-9/16"	1/8"	1-5/8"	2-7/32"	1-15/16"	2-1/16"	2-1/2" — 2-5/8"	7/8"	140,400 lbs.

^{*}Ultimate strength based on 160% f_v specified.

ICC ES Cyclic Test Averages for Dowel Bar Splicer System ICC Evaluation Report No. 4028

	Bar Size		Bar Area	Сус	lic Load Leve	ls (Stages 1,	Tensile Strength (Stage 4)			
US	Metric (mm)	CN (M)	sq. in.	P _{min} (kips)	P _{max¹} (kips)	P _{max²} (kips)	P _{max³} (kips)	(kips)	ksi	%f _y
#4	[13]	[10]	0.20	-6.0	11.4	13.12	13.76	20.08	100.42	167.2
#5	[16]	[15]	0.31	-9.3	17.7	21.9	22.18	30.23	97.5	162.4
#6	[19]	[20]	0.44	-13.2	25.1	31.58	32.36	45.01	102.3	170.4
#7	[22]	_	0.60	-18.0	34.2	41.68	44.6	60.24	100.42	167.4
#8	[25]	[25]	0.79	-23.7	45.0	48.42	55.74	79.64	100.84	168.0
#9	[2 9]	[30]	1.00	-30.0	57.0	66.52	66.84	95.66	95.66	159.2

Note: The above are average values derived from tests performed by Wiss, Janney, Elstner Associates, Inc. in accordance with ICC's acceptance criteria AC-133. All bars met ICC's Type 2 Splice Requirements.

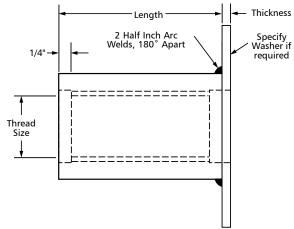
Note: One kip = 1,000 pounds.

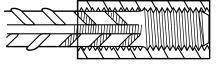
D-110 US/MC-SAE Coupler Splice System*

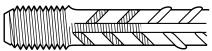
ICC Evaluation Report No. 5216

The Dayton Superior D-110 US/MC-SAE Coupler Splice System is suitable for splicing reinforcement bars end to end. The mechanical connections accommodate bar sizes #4 through #18 and are a convenient alternative to lap splices and/ or butt welding. Typical applications include splicing rebar in vertical column cages, monolithic structures, etc.

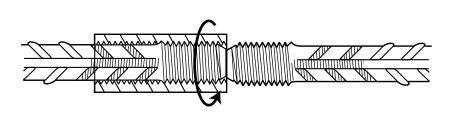
The standard cou-

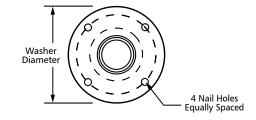

			D-110	US/MC	-SAE Couple	r Splice S	System		
Product	Product	Bar Size Designation			Thread	C	C	Washer	Coupler
code w/out Washer	Code with Washer	us	Metric (mm)	CN (M)	Size	Couple O.D.	Coupler Length	Diameter (Optional)	Ultimate Strength**
123179	123187	#4	[13]	[10]	5/8"-11 UNC	1"	2-1/4"	1-3/4"	19,200 lbs.
123180	123188	#5	[16]	[15]	3/4"-10 UNC	1-1/8"	2-1/2"	2-1/4"	27,960 lbs.
111480	123189	#6	[19]	[20]	7/8"-9 UNC	1-1/4"	2-3/4"	2-1/2"	42,240 lbs.
111490	123190	#7	[22]	-	1"-8 UNC	1-1/2"	3"	2-1/2"	57,600 lbs.
111500	123191	#8	[25]	[25]	1-1/8"-8 UN	1-5/8"	3-1/4"	2-3/4"	75,840 lbs.
111520	123192	#9	[29]	[30]	1-1/4"-8 UN	1-7/8"	3-1/2"	3"	96,000 lbs.
111530	123193	#10	[32]	1	1-7/16"-8 UN	2-1/4"	3-7/8"	3-1/2"	121,920 lbs.
111540	123194	#11	[36]	[35]	1-9/16"-8 UN	2-3/8"	4-1/8"	3-3/4"	149,760 lbs.
111560	123195	#14	[43]	[45]	1-7/8"-8 UN	2-3/4"	5-1/4"	4-1/4"	216,000 lbs.
111570	123196	#18	[57]	[55]	2 1/2"-8 UN	3-5/8"	6-1/2"	5"	384,000 lbs.


**Ultimate strength based on 160% f_y specified.


pler's heavy wall design is manufactured from high quality steel and is tested in accordance with ACI, AASHTO and ASTM standards. The coupler is designed to achieve 160% of the specified yield (full mechanical ultimate) of the bar.

The D-110 coupler employs the attributes of the Dowel-In's upset, upsized thread to achieve a strong, straight-line mechanical splice. Dowel-Ins or D-115 Inertia Splice Bars are threaded into the heavy duty coupler's body to complete the splice. The D-110 coupler is also available with an optional washer face, if required.


A unique advantage of the D-110 US/MC-SAE Coupler is that the coupler can be advanced beyond the threaded region of the splice bar and then, after butting the two bars, can be back-threaded onto the second bar to complete the splice without having to turn the bars.



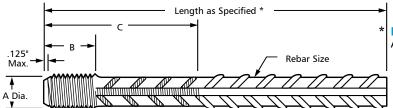
D-110 US/MC-SAE Coupler Shown With Optional Washer Face

*U.S. Patent No. 5,152,118

Standard Coupler Splice

To Order:

Specify: (1) quantity, (2) name, (3) bar size.


Example:

300, D-110 US/MC-SAE Couplers for #14 rebar.

D-111 US/MC-SAE Standard Threaded Splice Bar

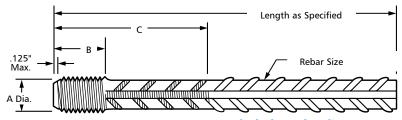
The Dayton Superior D-111 US/MC-SAE Standard Threaded Splice Bar is manufactured from grade 60 deformed rebar material, with an upsized threaded end that provides the bar with a cross-sectional area greater than the original bar. This ensures that there will be no reduction of bar strength due to the threading operation. The standard D-111 Splice Bar is available in sizes #4 through #18 in plain or epoxy coated finish.

Note: D-111 Splice Bars are measured overall. Available with or without overthread ("C" dimension).

D-111 US/MC-SAE Standard Threaded Splice Bar

Bar S	ize Designa	ation				
US	Metric (mm)	CN (M)	Thread Size	A	В	С
#4	[13]	[10]	5/8"-11 UNC	5/8"	7/8"	2 1/8"
#5	[16]	[15]	3/4"-10 UNC	3/4"	1"	2-1/4"
#6	[19]	[20]	7/8"-9 UNC	7/8"	1-1/8"	2-1/2"
#7	[22]	_	1"-8 UNC	1"	1-1/4"	2-3/4"
#8	[25]	[25]	1-1/8"-8 UN	1-1/8"	1-3/8"	3"
#9	[29]	[30]	1-1/4"-8 UN	1-1/4"	1-1/2"	3-1/4"
#10	[32]	_	1-7/16"-8 UN	1-7/16"	1-11/16"	3-5/8"
#11	[36]	[35]	1-9/16"-8 UN	1-9/16"	1-13/16"	3-7/8"
#14	[43]	[45]	1-7/8"-8 UN	1-7/8"	2-1/8"	5"
#18	[57]	[55]	2 1/2"-8 UN	2-1/2"	2-3/4"	6-1/4"

To Order:


Specify: (1) quantity, (2) name, (3) bar size, (4) length.

Example:

1,200, D-111 US/MC-SAE Standard Threaded Splice Bars, #7 x 10' long.

D-112 US/MC-SAE Extended Thread Splice Bar

The Dayton Superior D-112 US/MC-SAE Extended Thread Splice Bars are similar to the standard bar, except for the lengthened threaded end section. The extended length of the threaded end, plus two locking nuts, allows the bar to be utilized for position coupler applications.

D-112 US/MC-SAE Extended Thread Splice Bar

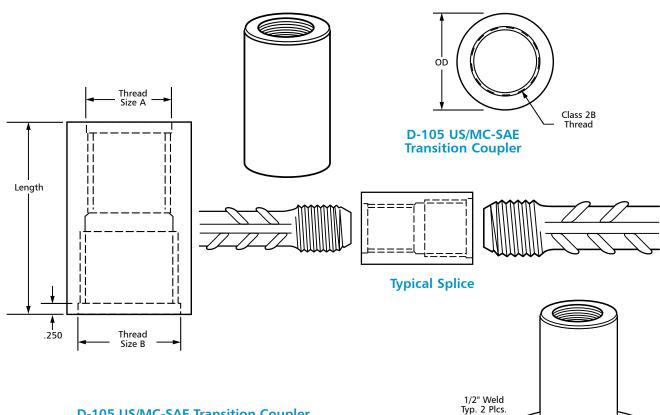
Bar S	ize Designa	ation					
US	Metric (mm)	CN (M)	Thread Size	Α	В	С	
#6	[19]	[20]	7/8"-9 UNC	7/8"	2"	3-1/8"	
#7	[22]	_	1"-8 UNC	1"	2-1/4"	3-3/8"	
#8	[25]	[25]	1-1/8"-8 UN	1-1/8"	2-3/8"	3-3/4"	
#9	[29]	[30]	1-1/4"-8 UN	1-1/4"	2-5/8"	4-1/8"	
#10	[32]	_	1-7/16"-8 UN	1-7/16"	3"	4-5/8"	
#11	[36]	[35]	1-9/16"-8 UN	1-9/16"	3-1/8"	4-7/8"	
#14	[43]	[45]	1-7/8"-8 UN	1-7/8"	3-7/8"	6-1/4"	
#18	[57]	[55]	2 1/2"-8 UN	2-1/2"	5"	8"	

Note: D-112 Splice Bars are measured overall.

Available with or without overthread ("C" dimension).

To Order:

Specify: (1) quantity, (2) name, (3) bar size, (4) length.


Example:

300 D-112 US/MC-SAE Extended Thread Splice Bars, #7 bars x 20' long.

D-105 US/MC-SAE Transition Coupler

The Dayton Superior D-105 US/MC-SAE Transition Coupler is used to provide a mechanical connection of two threaded rebar of different diameters. The D-105 coupler is designed to achieve 160% f_y of the smaller bar. See the chart for standard sizes. The D-105 coupler can be furnished with or without a mounting washer and can be special-ordered in other than standard sizes.

D-105 US/MC-SAE Transition Coupler

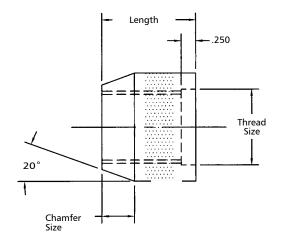
	Rebar Size Size		Threa	d Size	Cou	upler	Coupler
US	Metric (mm)	CN (M)	А	В	O.D.	Length	Ultimate Strength**
#4-#5	[13-16]	[10-15]	5/8"-11 UNC	3/4"-10 UNC	1-1/8"	2-5/8"	19,200 lbs.
#5-#6	[16-19]	[15-20]	3/4"-10 UNC	7/8"-9 UNC	1-1/4"	2-7/8"	29,760 lbs.
#6-#7	[19-22]	_	7/8"-9 UNC	1"-8 UNC	1-1/2"	3-1/8"	42,240 lbs.
#7-#8	[22-25]	_	1"-8 UNC	1-1/8"-8 UN	1-5/8"	3-3/8"	57,600 lbs.
#7-#9	[22-29]	_	1"-8 UNC	1-1/4"-8 UNC	1-7/8"	3-1/2"	57,600 lbs.
#8-#9	[25-29]	[25-30]	1-1/8"-8 UN	1-1/4"-8 UN	1-7/8"	3-5/8"	75,840 lbs.
#8-#10	[25-32]	_	1-1/8"-8 UN	1-7/16"-8 UN	2-1/4"	3-7/8"	75,840 lbs.
#9-#10	[29-32]	_	1-1/4"-8 UN	1-7/16"-8 UN	2-1/4"	4"	96,000 lbs.
#9-#11	[29-36]	[30-35]	1-1/4"-8 UN	1-9/16"-8 UN	2-3/8"	4-1/8"	96,000 lbs.
#10-#11	[32-36]	_	1-7/16"-8 UN	1-9/16"-8 UN	2-3/8"	4-1/4"	121,920 lbs.
#10-#14	[32-43]	_	1-7/16"-8 UN	1-7/8"-8 UN	2-3/4"	4-5/8"	121,920 lbs.
#11-#14	[36-43]	[35-45]	1-9/16"-8 UN	1-7/8"-8 UN	2-3/4"	4-3/4"	149,760 lbs.
#11-#18	[36-57]	[35-55]	1-9/16"-8 UN	2-1/2"-8 UN	3-5/8"	5-3/8"	149,760 lbs.
#14-#18	[43-57]	[45-55]	1-7/8"-8 UN	2 1/2"-8 UN	3-5/8"	5-5/8"	216,000 lbs.

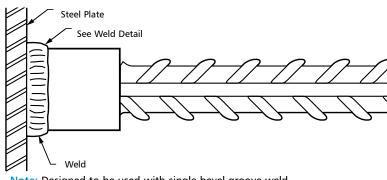
^{**} Ultimate strength based on 160% f_y specified.

Optional Mounting Washer

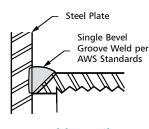
To Order:

Specify: (1) quantity, (2) name, (3) rebar sizes, (4) flange information.


Example:


250, D-105 US/MC SAE Transition Couplers, #6 to #7 rebar without mounting flanges.

D-106 US/MC-SAE Welding Half Coupler


The Dayton Superior D-106 US/MC-SAE Welding Half Coupler provides a method of connecting rebar to structural steel members, such as piles, weld plates, beams, columns, etc. The D-106 coupler is fabricated from steel meeting ASTM A108 grade 1018 or 1020 and is designed to allow maximum weld capacity. Successful welds can be produced at the job site, providing that good welding practices are maintained.

Note: Designed to be used with single bevel groove weld (types) SMAW, GMAW or FCAW. Reference American Welding Society Standard, ANSI/ASW D1.1

Weld Detail

D-106 US/MC-SAE Welding Half Coupler

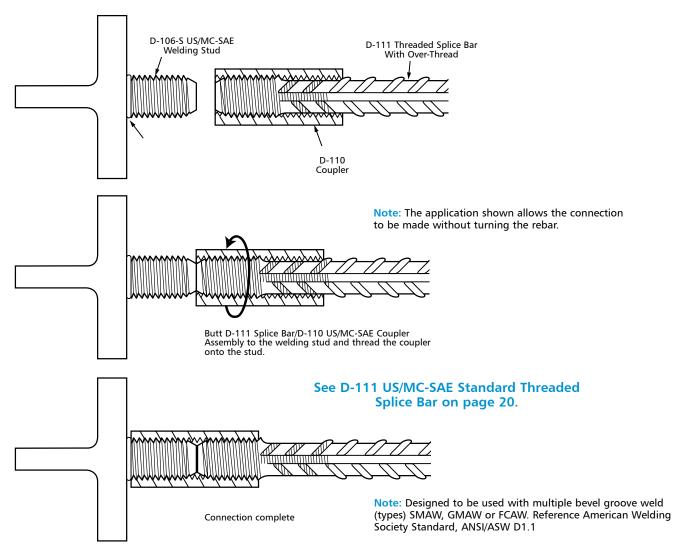
To Order:

Specify: (1) quantity, (2) name, (3) rebar size.

Example:

150, D-106 US/MC-SAE Welding Half Couplers for #8 rebar.

D-106 US/MC-SAE Welding Half Coupler


Product	Bar	Size Designa	tion	Thread	Coupler	Coupler	Chamfer	Coupler
Code	US	Metric (mm)	CN (M)	Size	O.D.	Length	Size	Ultimate Strength**
77714	#4	[13]	[10]	5/8" -11 UNC	1 -1/4"	1-1/8"	1/4"	19,200 lbs.
77715	#5	[16]	[15]	3/4" -10 UNC	1 -1/4"	1-1/4"	1/4"	29,760 lbs.
77716	#6	[19]	[20]	7/8" -9 UNC	1 -1/4"	1-3/8"	3/8"	42,240 lbs.
77717	#7	[22]	_	1"-8 UNC	1-1/2"	1-1/2"	3/8"	57,600 lbs.
77718	#8	[25]	[25]	1-1/8"-8 UN	1-5/8"	1-5/8"	1/2"	75,840 lbs.
77719	#9	[29]	[30]	1-1/4"-8 UN	1-7/8"	1-3/4"	9/16"	96,000 lbs.
77720	#10	[32]	_	1-7/16"-8 UN	2-1/4"	1-15/16"	5/8"	121,920 lbs.
77721	#11	[36]	[35]	1-9/16"-8 UN	2-3/8"	2-1/16"	3/4"	149,760 lbs.
	#14	[43]	[45]	1-7/8"-8 UN	2-3/4"	2-3/8"	15/16"	216,000 lbs.
	#18	[57]	[55]	2 1/2"-8 UN	3-5/8"	3"	1-1/8"	384,000 lbs.

^{**} Actual ultimate strength depends on the strength of the field weld and the material to which the coupler is welded. Ultimate strength based on 160% f_v specified

D-106-S US/MC-SAE Welding Stud

The Dayton Superior D-106-S US/MC-SAE Welding Stud is available to provide an alternate method of connecting rebar to structural steel members. The D-106-S Welding Stud is fabricated from ASTM A108 grade 1035 steel.

Bar	Size Designa	tion		Length	Chamfer Size	Stud Ultimate
US	Metric (mm)	CN (M)	Thread Size	(in.)	(in.)	Strength*
#4	[13]	[10]	5/8"-11 UNC	1-1/2"	1/4"	19,200 lbs.
#5	[16]	[15]	3/4"-10 UNC	1-5/8"	1/4"	29,760 lbs.
#6	[19]	[20]	7/8"–9 UNC	1-7/8"	3/8"	42,240 lbs.
#7	[22]	_	1"–8 UNC	2"	3/8"	57,600 lbs.
#8	[25]	[25]	1-1/8"–8 UN	2-1/4"	1/2"	75,890 lbs.
#9	[29]	[30]	1-1/4"–8 UN	2-1/2"	9/16"	96,000 lbs.
#10	[32]	_	1-7/16"-8 UN	2-3/4"	5/8"	121,920 lbs.
#11	[36]	[35]	1-9/16"-8 UN	3"	3/4"	149,760 lbs.
#14	[43]	[45]	1-7/8"-8 UN	3-3/8"	7/8"	216,000 lbs.
#18	[57]	[55]	2-1/2"-8 UN	4-1/4"	1-1/8"	384,000 lbs.

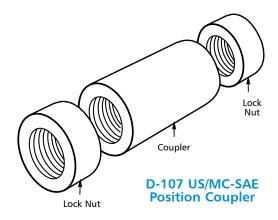
To Order:

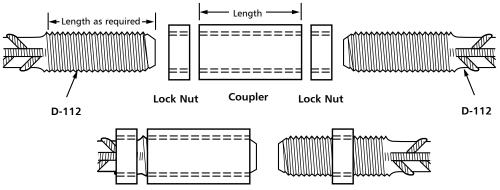
Specify: (1) quantity, (2) name, (3) rebar sizes.

Example:

200, D-106-S US/MC-SAE Welding Stud, #8 rebar.

^{*}Actual ultimate strength depends on the strength of the field weld and the material to which the coupler is welded.


Ultimate Strengths shown are based on 160% f_v specified.



D-107 US/MC-SAE Position Coupler

The Dayton Superior D-107 US/MC-SAE Position Coupler provides a means to splice reinforcing steel without having to turn the rebar. In places with little working space or heavy rebar congestion, the D-107 coupler offers an efficient splicing alternative. D-107 couplers are available for standard splices (bars of equal size) and transition splices (bars of unequal sizes).

To ensure adequate thread length, the D-107 Position Coupler requires the D-112 Extended Thread Splice Bar on page 20.

Lock nut and coupler are threaded completely onto one bar.
Thread lock nut onto second bar.

Butt the bars together and reverse thread coupler onto second bar. Thread lock nuts to coupler and tighten nuts.

To Order:

Specify (1) quantity, (2) name, (3) bar size(s).

Example:

500, D-107 US/MC-SAE Position Couplers for #6 rebar.

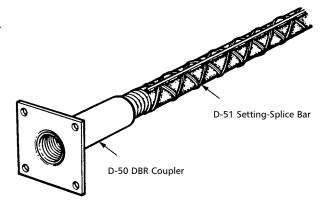
D-107 US/MC-SAE Position Coupler Dimensions

Bar S	ize Designa	ition	Thread	Coupler	Coupler	Locknut	Coupler				
us	Metric (mm)	CN (M)	Size	O.D.	Length	Length	Ultimate Strength**				
#4	[13]	[10]	5/8"-11 UNC	1"	2-1/4"	13/32"	19,200 lbs.				
#5	[16]	[15]	3/4"-10 UNC	1-1/8"	2-1/2"	1/2"	27,960 lbs.				
#6	[19]	[20]	7/8"-9 UNC	1-1/4"	2-3/4"	19/32"	42,240 lbs.				
#7	[22]	_	1"-8 UNC	1-1/2"	3"	11/16"	57,600 lbs.				
#8	[25]	[25]	1-1/8"-8 UN	1-5/8"	3-1/4"	3/4"	75,840 lbs.				
#9	[29]	[30]	1-1/4"-8 UN	1-7/8"	3-1/2"	27/32"	96,000 lbs.				
#10	[32]	_	1-7/16"-8 UN	2-1/4"	3-7/8"	31/32"	121,920 lbs.				
#11	[36]	[35]	1-9/16"-8 UN	2-3/8"	4-1/8"	1-1/16"	149,760 lbs.				
#14	[43]	[45]	1-7/8"-8 UN	2-3/4"	5-1/4"	1-1/4"	216,000 lbs.				
#18	[57]	[55]	2 1/2"-8 UN	3-5/8"	6-1/2"	1-11/16"	384,000 lbs.				

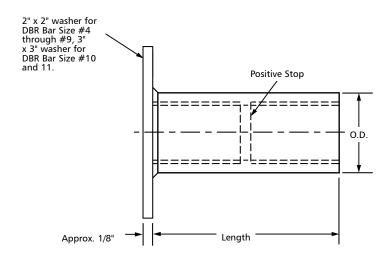
^{*}Ultimate Strength based on 160% f_v specified.

ICC ES Cyclic Test Averages on Dayton Superior US/MC Splices ICC Evaluation Report No. 5216

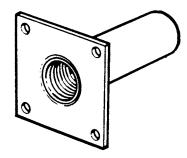
Bar S	ize Design	ation	Bar Area	Cycli	c Load Leve	els (Stages 1	1,2,3)	Tensile	Strength (S	tage 4)
US	Metric (mm)	CN (M)	(sq. in.)	P _{min} (kips)	P _{max} 1 (kips)	P _{max} ² (kips)	P _{max} 3 (kips)	(kips)	(ksi)	%f _y
#4	[13]	[10]	0.20	-6.0	11.4	12.14	12.92	19.79	99.00	164.8%
#5	[16]	[15]	0.31	-9.3	17.7	21.68	21.62	30.17	97.32	162.2%
#6	[19]	[20]	0.44	-13.2	25.1	26.20	27.28	42.83	97.34	162.8%
#7	[22]	_	0.60	-18.0	34.2	42.08	43.88	60.64	100.94	168.2%
#8	[25]	[25]	0.79	-23.7	45.0	48.58	53.12	79.42	100.54	167.4%
#9	[29]	[30]	1.00	-30.0	57.0	65.54	69.84	95.20	95.54	159.2%
#10	[32]	_	1.27	-38.1	72.4	80.00	83.64	124.54	98.06	163.4%
#11	[36]	[35]	1.56	-46.8	88.9	102.96	103.00	149.02	95.52	159.2%
#14	[43]	[45]	2.25	-67.5	128.3	143.42	158.78	220.24	97.88	163.2%
#18	[57]	[55]	4.00	-120.0	228.0	259.3	287.2	395.3	98.7	165%


The above are average values derived from tests performed by Wiss, Janney, Elstner Associates, Inc. in accordance with ICC's acceptance criteria AC-133. All bars met ICC's Type 2 Splice Requirements.

Note: One kip = 1,000 pounds.


D-50 DBR Coupler System

The DBR Couplers and DBR Setting/Splice Bars are simple, easy to use and familiar to all construction workers. The coupler is fastened to the formwork by nails, screws or a NC threaded bolt of proper diameter and length. The D-50 DBR Coupler splice meets or exceeds codes requiring $125\%\ f_V$.



D-50 DBR Coupler and DBR Setting/Splice Bars

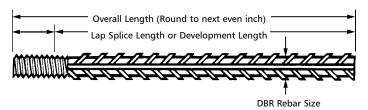
The Dayton Superior D-50 DBR Coupler is fabricated from high quality steel satisfying ASTM A-108 and is tested in accordance with ACI, AASHTO and ASTM standards. DBR Couplers accommodate rebar sizes #4 through #11 and have an internal positive stop to ensure proper thread engagement. Refer to tables for additional specifications.

To Order:

Specify: (1) quantity, (2) name, (3) rebar size

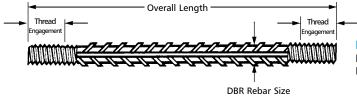
Example:

500 pcs., D-50 DBR Coupers, #8 rebar.

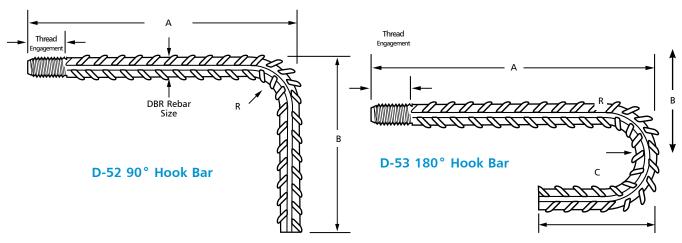

D-50 DBR Coupler Selection Chart

Product	Bar	Size Design	ation		
Code	US	Metric (mm)	CN (M)	Thread Data	O.D. x Length
77098	#4	[13]	[10]	1/2" -13 UNC	3/4" x 1- 7/8"
77100	#5	[16]	[15]	5/8" - 11 UNC	7/8" x 2"
77110	#6	[19]	[20]	3/4" -10 UNC	1- 1/16" x 2- 3/8"
77120	#7	[22]	_	7/8" - 9 UNC	1- 1/4" x 2- 3/4"
77130	#8	[25]	[25]	1" - 8 UNC	1- 3/8" x 3- 1/8"
77140	#9	[29]	[30]	1 1/8" - 8 UN	1- 5/8" x 3- 5/8"
77142	#10	[32]	_	1 1/4" - 8 UN	1- 3/4" x 4- 1/8"
77144	#11	[36]	[35]	1 3/8" - 8 UN	1-15/16" x 4- 3/8"

Note: Threads on #9, #10 and #11 couplers are UN not NC.


D-51 DBR Straight Bar Threaded One End

D-51 Straight Bar Selection Chart


Bar S	ize Design	ation		A Thread
US	Metric (mm)	CN (M)	Thread Data	Engagement
#4	[13]	[10]	1/2"-13 UNC	3/4"
#5	[16]	[15]	5/8"-11 UNC	7/8"
#6	[19]	[20]	3/4"-10 UNC	1-1/16"
#7	[22]	_	7/8"- 9 UNC	1-1/4"
#8	[25]	[25]	1"- 8 UNC	1-7/16"
#9	[29]	[30]	1-1/8"- 8 UN	1-11/16"
#10	[32]	_	1-1/4"- 8 UN	1-15/16"
#11	[36]	[35]	1-3/8"- 8 UN	2-1/16"

D-54 DBR Straight Bar Threaded Both Ends

Note: Color coded removable plastic caps available on request. D-51 overall length is required length less one half of coupler length. D-54 overall length is required length less coupler length minus 5/16".

D-52 DBR 90° Hook Bar and D-53 180° Hook Bar Threaded One End

D-52 and D-53 Hook Bar Selection Chart

Bar Size Designation		Thread	Thread	B* Standard	B Standard	D Standard	R	
US	Metric (mm)	CN (M)	Data	Engage- ment	For D-52	For D-53	For D-53	Standard
#4	[13]	[10]	1/2"-13 UNC	3/4"	4-1/2"	9-3/4"	4-1/2"	1-1/2"
#5	[16]	[15]	5/8"-11 UNC	7/8"	5-1/2"	12"	5"	1-7/8"
#6	[19]	[20]	3/4"-10 UNC	1-1/16"	7"	23"	6"	2-1/4"
#7	[22]	-	7/8"- 9 UNC	1-1/4"	8"	24"	7"	2-5/8"
#8	[25]	[25]	1"- 8 UNC	1-7/16"	9"	25"	8"	3"
#9	[29]	[30]	1-1/8"- 8 UN	1-11/16"	11"	31"	10-3/8"	4-3/4"
#10	[32]	_	1-1/4"- 8 UN	1-15/16"	12"	32"	11-5/8"	5-3/8"
#11	[36]	[35]	1-3/8"- 8 UN	2-1/16"	14"	33"	12-7/8"	6"

Notes: Color coded removable plastic caps available on request.

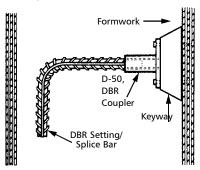
To Order:

- Specify: (1) quantity, (2) name, (3) bar size (4) dimension "B"
- (as specified on plans)
- (5) dimension "C" or "D" and
- (6) dimension "R"

Example:

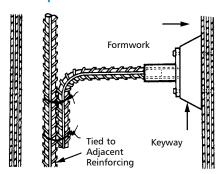
500 pcs., D-52 90° Hook Bar, #6, B=7", C=20", R=2"

^{*}Based on "R" minimum as shown. Standard dimensions are to CRSI standard by pin size.



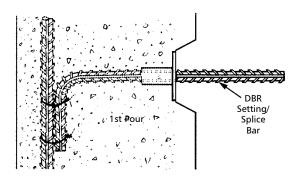
D-52 and D-53 Hook Bar Selection Chart

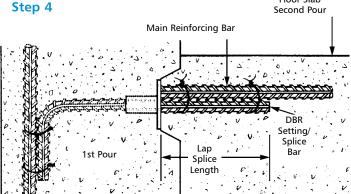
Bar Si	ze Design	ation	Daimfausins		N 41 1			Thread Data	
US	Metric (mm)	CN (M)	Reinforcing Bar Area (in²)	Minimum Yield (lbs.)	Minimum Ultimate (lbs.)	Thread Data	Thread Tensile Stress Area (in²)	125% f _y Minimum Requirement (lbs.)	Minimum Ultimate Tensile Stress (psi)
#4	[13]	[10]	0.20	12,000	18,000	1/2"-13 NC	0.1419	15,000	105,708
#5	[16]	[15]	0.31	18,600	27,900	5/8"-11 NC	0.226	23,250	102,876
#6	[19]	[20]	0.44	26,400	39,600	3/4"-10 NC	0.334	33,000	98,802
#7	[22]		0.60	36,000	54,000	7/8"-9 NC	0.462	45,000	97,403
#8	[25]	[25]	0.79	47,400	71,100	1"-8 UNC	0.606	59,250	97,772
#9	[29]	[30]	1.00	60,000	90,000	1-1/8"-8 UN	0.790	75,000	94,937
#10	[32]		1.27	76,200	114,300	1-1/4"-8 UN	1.000	95,250	95,250
#11	[36]	[35]	1.56	93,600	140,400	1-3/8"-8 UN	1.233	117,000	94,891
#14	[43]	[45]	2.25	135,000	202,500	1-5/8"-8 UN	1.780	168,750	94,803


How to Install the DBR Coupler System

Step 1

A DBR Setting/Splice Bar is threaded into the D-50 coupler until the positive thread stop is reached. The D-50 DBR coupler is then fastened to the formwork with nails, screws or bolts.


Step 2


The DBR Setting/Splice Bar is tied off to adjacent reinforcing steel, for proper support during concrete placement as well as to maintain the required lap splice length.

Floor Slab

Step 3

After the formwork is stripped, a second DBR Setting/ Splice Bar is threaded into the exposed end of the D-50 coupler until the stop is reached.

The DBR Setting/Splice bar is tied to the adjacent reinforcing steel maintaining the proper lap splice length. The dowel bar replacement is now complete, ready for final concrete placement.

Why Taper-Lock is Better

- ICC Evaluation Report ESR-2481
- Portable design allows you to take the system wherever you need it.
- Sharpen cutters up to three times for previously unheard of efficiency! Spend less money on new blades, and save your crew from unnecessary downtime.
- Revolutionary high-speed taper cut more than doubles the production of conventional cutters, allowing you to beat deadlines and reduce costs.
- No need to purchase any costly additional cutting fluids
 simply use a conventional water-soluble cutting fluid.
- Strong unit withstands tough projects. Straightforward process makes operation and repair easy.

Splice Rebar On-site, in a Fraction of the Time

You already rely on Bar-Lock® couplers from Dayton Superior — the company you trust is proud to offer the portable, high-speed taper cut solution! Turn the system that's already been proven on sites throughout Europe into your on-site advantage. Dayton Superior is the only company able to bring the reliable Taper-Lock design to North American fabrictors and contractors.

Use the Dayton Taper-Lock on Your Next Job Site

The compact design saves room in your fabrication shop or on the job with all the advantages and one-quarter the size of similar machines, it's time to re-think rebar splicing! Strength certification and test results are available upon request through the qualified Dayton Superior Dealer network throughout North America.

Specific:

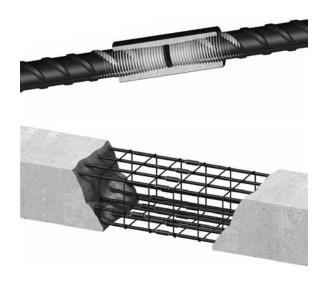
Mechanical connections shall be Taper-Lock® taper threaded couplers as manufactured by Dayton Superior Corp.

Generic:

The mechanical connection shall meet building code requirements of developing in tension and compression as required by_______ (insert name here). The mechanical connection shall be the positive locking, taper threaded type coupler manufactured from high quality steel. The bar ends must be taper threaded using the manufacturer's bar threading equipment to ensure proper taper and thread engagement. All couplers shall be installed per the manufacturer's approved procedures.

D-310 TAPER-LOCK STANDARD COUPLER

PRODUCT DESCRIPTION:


The D-310 Taper-Lock is used to join any bar-to-bar connection of the same size, where one bar can be rotated. This simplifies rebar splicing in areas where rebar congestion prevents the use of long lap splices. Engagement of the bar within the coupler is simplified by the taper thread which aids in alignment.

PRODUCT FEATURES AND BENEFITS:

- · Used in 80% of all connections
- · The compact design of the coupler ensures suitability for use in confined situations where space is restricted or where the loss of cover must be minimized
- · Reduces engineering design time
- · Eliminates rebar congestion
- Provides Type 2 splicing capacities (160% F_v) and simplifies load paths
- Meets approval from ICC (ESR 2481), ACI, CalTrans, IBC2006, and Ministries of Transportation for Ontario and
- · Approved for use in fatigue applications

PRODUCT SPECIFICATIONS:

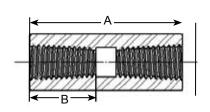
- · Extension of Taper-Lock product line
- · Accommodates rebar sizes #4 through #18
- · Available in Black, Epoxy or Hot-Dipped Galvanized
- Type 2 Splice (160% of F_y)
 Connect bars of the same size using an internal sleeve with two right hand tapered threads
- · Each end must be tightened with calibrated torque wrench

HOW TO ORDER:

SPECIFY:

- 1. Quantity
- 2. Name
- 3. Rebar size
- 4. Finish
- 5. Made in USA requirement

EXAMPLE:


- 1. 500 pieces
- 2. D-310 Taper-Lock® Standard Coupler
- 3. #6
- 4. Black
- 5. Made in the USA not required

PRODUCT CODES

	Bar Size		Made in the USA	Made in the USA	Made in the USA	(Black)	(Epoxy)
US	Metric (mm)	CN (m)	(Black) ASTM A311 Grade 1144	(Epoxy) ASTM A311 Grade 1144	(Hot dipped Galvanized) ASTM A311 Grade 1144	ASTM A576 Grade 1045	ASTM A576 Grade 1045
#4	[13]	[10]	127020	127258	128037	126389	128322
#5	[16]	[15]	127021	127259	128038	126390	128323
#6	[19]	[20]	127022	127260	128039	126391	128324
#7	[22]	-	127023	127261	128040	126392	128325
#8	[25]	[25]	127024	127262	128041	126393	128326
#9	[29]	[30]	127025	127263	120842	126394	128327
#10	[32]	-	127026	127264	128043	126395	128328
#11	[36]	[35]	127027	127265	128044	126396	128329
#14	[43]	[45]	127028	127266	128045	126397	128330
#18	[57]	[55]	127019	127267	128046	126398	128331

NOMINAL ENGAGEMENT

	Bar Size	,	" <i>إ</i>	λ"	"B" (No	minal)
US	Metric (MM)	CN (M)	US	(mm)	US	(mm)
#4	[13]	[10]	2.362	[60]	1.024	[26]
#5	[16]	[15]	2.756	[70]	1.221	[31]
#6	[19]	[20]	2.874	[73]	1.281	[32.5]
#7	[22]	_	3.189	[81]	1.399	[35.5]
#8	[25]	[25]	3.622	[92]	1.615	[41]
#9	[29]	[30]	4.016	[102]	1.812	[46]
#10	[32]	-	4.488	[114]	2.049	[52]
#11	[36]	[35]	4.921	[125]	2.246	[57.5]
#14	[43]	[45]	5.827	[148]	2.719	[69]
#18	[57]	[55]	7.638	[194]	3.625	[92]

INSTALLATION: D-310 TAPER-LOCK STANDARD COUPLER

STEP 1

The coupler is normally supplied fixed to the reinforcing bar, ready to be installed and cast in concrete.

STEP 2

After casting the concrete and when ready to extend, remove the thread protector from the coupler. Position the continuation bar in the sleeve and rotate the bar into the coupler.



STEP 3
Continue to screw the bar into the coupler until tight.

STEP 4

To ensure correct installation, tighten the joint to the specified torque using the calibrated torque wrench on the continuation bar.

TORQUE SETTINGS: D-310 TAPER-LOCK STANDARD COUPLER

Taper-Lock Coupler Torque Chart

	Rebar Size		Applied Torque		Wrench Setting				
luan anial	Metric	CN	Imperial Metric		Large		Small		
Imperial	(mm)	(M)			Imperial	Metric	Imperial	Metric	
#4	13mm	[10]	55 lb-ft	75 Nm	-	-	39 lb-ft	53 Nm	
#5	16mm	[15]	81 lb-ft	110 Nm	62 lb-ft	84 Nm	57 lb-ft	77 Nm	
#6	19mm	[20]	111 lb-ft	150 Nm	85 lb-ft	115 Nm	78 lb-ft	106 Nm	
#7	22mm	_	151 lb-ft	205 Nm	116 lb-ft	157 Nm	105 lb-ft	143 Nm	
#8	25mm	[25]	199 lb-ft	270 Nm	153 lb-ft	207 Nm	139 lb-ft	188 Nm	
#9	29mm	[30]	207 lb-ft	280 Nm	159 lb-ft	215 Nm	146 lb-ft	198 Nm	
#10	32mm	_	210 lb-ft	285 Nm	162 lb-ft	219 Nm	147 lb-ft	199 Nm	
#11	36mm	[35]	225 lb-ft	305 Nm	173 lb-ft	234 Nm	-	-	
#14	43mm	[45]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-	
#18	57mm	[55]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-	

D-320 TAPER-LOCK TRANSITIONAL COUPLER

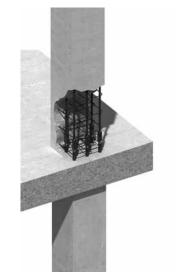
PRODUCT DESCRIPTION:

The D-320 Taper-Lock is used to join two reinforcing bars of different sizes. It is commonly used for economic designs and columns where the diameter of the rebar reduces as the columns extend up the structure.

PRODUCT FEATURES AND BENEFITS:

- · Eliminates rebar congestion
- · Reduces engineering design time
- · Allows for the connection of two different size bars
- Provides Type 2 splicing capacities (160% F_y) and simplifies load paths
- Meets approval from ICC (ESR 2481), ACI, CalTrans, IBC 2006 and Ministries of Transportation for Ontario and Quebec
- · Approved for use in fatigue applications

PRODUCT SPECIFICATIONS:

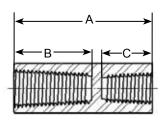

- · Extension of Taper-Lock product line
- · Accommodates all rebar configurations
- Available in Black or Epoxy
- Type 2 Splice (160% of F_v)
- Threads in internal sleeve correspond to the appropriate bar size
- Each end must be tightened and calibrated with a torque wrench

	Bar Size		Made in the USA (Epoxy)	Made in the USA (Black)
US	Metric (mm)	CN (m)	ASTM A311 Grade 1144	ASTM A311 Grade 1144
#4-#5	[13-16]	[10-15]	127249	127218
#5-#6	[16-19]	[15-20]	127250	127219
#6-#7	[19-22]	-	127251	127220
#7-#8	[22-25]	-	127252	127221
#8-#9	[25-29]	[25-30]	127253	127222
#9-#10	[29-32]		127254	127223
#10-#1	1 [32-36]	-	127255	127224
#11-#1	4 [36-43]	[35-45]	127256	127225
#14-#1	8 [43-57]	[45-55]	127257	127226

Other sizes available upon request

HOW TO ORDER:

SPECIFY:


- 1. Quantity
- 2. Name
- 3. Rebar size
- 4. Finish

EXAMPLE:

- 1. 500 pieces
- 2. D-320 Taper-Lock® Transitional Coupler
- 3. #6 #7
- 4. Black

NOMINAL ENGAGEMENT

	Bar Size		"A	"	"B" (Nominal)		"C" (Nominal)	
US	Metric [mm]	CN [M]	US	[mm]	US	[mm]	US	[mm]
#4-#5	[13-16]	[10-15]	2.7953	[71]	1.5748	[40]	1.0236	[26]
#5-#6	[16-19]	[15-20]	3.0315	[77]	1.6535	[42]	1.378	[35]
#6-#7	[19-22]	_	3.2283	[82]	1.7931	[45.5]	1.437	[36.5]
#7-#8	[22-25]	_	3.6024	[91.5]	2.0079	[51]	1.5945	[40.5]
#8-#9	[25-29]	[25-30]	4.0157	[102]	2.2047	[56]	1.811	[46]
#9-#10	[29-32]	_	4.4488	[113]	2.4409	[62]	2.0079	[51]
#10-#11	[32-36]	_	4.9213	[125]	2.6772	[68]	2.2441	[57]
#11-#14	[36-43]	[35-45]	5.5906	[142]	3.1102	[79]	2.4803	[63]
#14-#18	[43-57]	[45-55]	6.9291	[176]	4.0157	[102]	2.9134	[74]

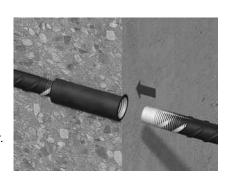
04/10

32

INSTALLATION:

D-320 TAPER-LOCK TRANSITIONAL COUPLER

When installing the D-320 Transitional coupler, the larger of the two bars must be connected first the smaller bar is to be connected after the coupler is tightened to the appropriate torque on the larger rebar. This process ensures that the smaller bar does not receive the higher torque used to connect the larger bar. As an alternative, it is permitted to connect the smaller bar to the coupler first. If the smaller bar is connected first, a second wrench can be used to keep the coupler from rotating while the second connection to the larger bar is made.


STEP 1

The coupler is normally supplied fixed to the reinforcing bar, ready to be installed and cast in concrete.

STEP 2

After casting the concrete and when ready to extend, remove the thread protector from the coupler. Position the continuation bar in the sleeve and rotate the bar into the coupler.

STEP 3 Continue to screw

STEP 4

To ensure correct installation, tighten the joint to the specified torque using the calibrated torque wrench on the continuation bar.

TORQUE SETTINGS: D-320 TAPER-LOCK® TRANSITIONAL COUPLER

Taper-Lock Coupler Torque Chart

	Rebar Size		Applied Torque		Wrench Setting				
luna a sui a l	Metric	CN	lese serial	Metric	Laı	rge	Small		
Imperial	(mm)	(M)	Imperial	Wetric	Imperial	Metric	Imperial	Metric	
#4	13mm	[10]	55 lb-ft	75 Nm	-	-	39 lb-ft	53 Nm	
#5	16mm	[15]	81 lb-ft	110 Nm	62 lb-ft	84 Nm	57 lb-ft	77 Nm	
#6	19mm	[20]	111 lb-ft	150 Nm	85 lb-ft	115 Nm	78 lb-ft	106 Nm	
#7	22mm	_	151 lb-ft	205 Nm	116 lb-ft	157 Nm	105 lb-ft	143 Nm	
#8	25mm	[25]	199 lb-ft	270 Nm	153 lb-ft	207 Nm	139 lb-ft	188 Nm	
#9	29mm	[30]	207 lb-ft	280 Nm	159 lb-ft	215 Nm	146 lb-ft	198 Nm	
#10	32mm	_	210 lb-ft	285 Nm	162 lb-ft	219 Nm	147 lb-ft	199 Nm	
#11	36mm	[35]	225 lb-ft	305 Nm	173 lb-ft	234 Nm	-	-	
#14	43mm	[45]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-	
#18	57mm	[55]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-	

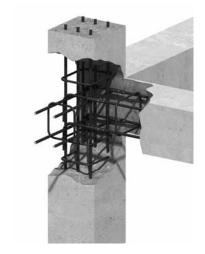
D-330 TAPER-LOCK POSITIONAL COUPLER

PRODUCT DESCRIPTION:

The D-330 Taper-Lock is used to join two bars of the same size where neither bar can be rotated. Typical applications are hook bar connections and column to slab connections.

PRODUCT FEATURES AND BENEFITS:

- · Eliminates rebar congestion
- · Reduces engineering design time
- Rebar never has to be rotated
- Provides Type 2 splicing capacities (160% $\rm F_{v})$ and simplifies load paths
- · Meets approval from ICC (ESR 2481), ACI, CalTrans, IBC 2006 and Ministries of Transportation for Ontario and Quebec
- · Approved for use in fatigue applications
- · Adjustability of coupler allows it to be a closer between two fixed bars


PRODUCT SPECIFICATIONS:

- · Extension of Taper-Lock product line
- · Accommodates rebar sizes #4 through #18
- · Available in Black or Epoxy
- Type 2 Splice (160% of F_y)
 Uses a three part system for connecting rebar
- · Each end must be tightened and calibrated with a torque wrench

PRODUCT CODES

Bar Size			Made in USA (Black)	Made in the USA (Epoxy)	(Black)
US	Metric (mm)	CN (m)	ASTM A311 Grade 1144	ASTM A311 Grade 1144	ASTM A576 Grade 1045
#4	[13]	[10]	127065	127239	128268
#5	[16]	[15]	127066	127240	128269
#6	[19]	[20]	127067	127241	128270
#7	[22]	-	127068	127242	128271
#8	[25]	[25]	127069	127243	128272
#9	[29]	[30]	127070	127244	128273
#10	[32]	-	127071	127245	128274
#11	[36]	[35]	127072	127246	128275
#14	[43]	[45]	127073	127247	128276
#18	[57]	[55]	127074	127248	128277

HOW TO ORDER:

SPECIFY:

- 1. Quantity
- 2. Name
- 3. Rebar size
- 4. Finish
- 5. Made in USA requirement

EXAMPLE:

- 1. 500 pieces
- 2. D-330 Taper-Lock® Positional Coupler
- 4. Black
- 5. Made in USA not required

NOMINAL ENGAGEMENT

	Bar Size		BAR T	MUM O BAR ANCE	MINIMUM BAR TO BAR DISTANCE		
US	Metric CN [MM] [M]		US	[mm]	US	[mm]	
#4	[13]	[10]	4.4	[111.8]	4	[101.5]	
#5	[16]	[15]	4.8	[121.0]	4.3	[109.2]	
#6	[19]	[20]	4.7	[119.5]	4.4	[111.8]	
#7	[22]	_	6.5	[166.2]	5.8	[147.3]	
#8	[25]	[25]	6.7	[170.5]	5.8	[147.3]	
#9	[29]	[30]	6.8	[172.5]	5.9	[149.9]	
#10	[32]	-	7.3	[186.5]	6.3	[158.9]	
#11	[36]	[35]	8.3	[210.0]	6.8	[172.6]	
#14	[43]	[45]	9.6	[244.0]	7.7	[195.6]	
#18	[57]	[55]	12.3	[312.1]	9.5	[241.2]	

MAXIMUM EXTENDED POSITION

MINIMAL COLAPSED POSITION

INSTALLATION:

D-330 TAPER-LOCK POSITIONAL COUPLER

STEP 1

The female section of the positional coupler is normally cast flush in concrete. The installer must take care to protect the internal threads and prevent the ingress of concrete. Once cast and ready to extend, the male end complete with locknut can be screwed into place.

STEP 2

Postion the continuation bar as near as possible to the coupler fitted to the cast-in-bar.

STEP 3

Run the male component and locknut onto the continuation bar until fully engaged.

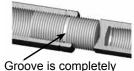
STEP 4

Using the torque wrench, tighten the male component on the continuation bar to the specified torque while holding the coninuation bar with a second wrench

STEP 5

Run the locknut along the threaded barrel of the male component to adjoin the female section. Using the torque wrench, tighten the locknut to the specified torque.

TORQUE SETTINGS:



CORRECT INSTALLATION

The groove in the parallel threaded section of the male component must be completely covered by the locknut. If any part of the groove is visible beyone the locknut, the degree of adjustability has been exceeded and the installation is incorrect.

CORRECT INSTALLATION

INCORRECT INSTALLATION

Groove is protuding

hidden within locknut

Groove is protuding from locknut

Taper-Lock Coupler Torque Chart

DA-330 TAPER-LOCK POSITIONAL COUPLER

laper-Lock Coupler lorque Chart										
Rebar Size Applied Torqu				Torque	Wrench Setting					
	Metric	CN	li-l	Madria	Lar	ge	Sm	nall		
US	(mm)	(M)	Imperial	Metric	Imperial	Metric	Imperial	Metric		
#4	13mm	[10]	55 lb-ft	75 Nm	-	-	39 lb-ft	53 Nm		
#5	16mm	[15]	81 lb-ft	110 Nm	62 lb-ft	84 Nm	57 lb-ft	77 Nm		
#6	19mm	[20]	111 lb-ft	150 Nm	85 lb-ft	115 Nm	78 lb-ft	106 Nm		
#7	22mm	_	151 lb-ft	205 Nm	116 lb-ft	157 Nm	105 lb-ft	143 Nm		
#8	25mm	[25]	199 lb-ft	270 Nm	153 lb-ft	207 Nm	139 lb-ft	188 Nm		
#9	29mm	[30]	207 lb-ft	280 Nm	159 lb-ft	215 Nm	146 lb-ft	198 Nm		
#10	32mm	_	210 lb-ft	285 Nm	162 lb-ft	219 Nm	147 lb-ft	199 Nm		
#11	36mm	[35]	225 lb-ft	305 Nm	173 lb-ft	234 Nm	-	-		
#14	43mm	[45]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-		
#18	57mm	[55]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-		

Taper-Lock Locking Nut Torque Chart

F	Rebar Size	e	Applied	Torque	Wrench Setting			
US Metric		CN	1	Metric	Lar	ge	Sm	all
03	(mm)	(M)	Imperial	wetric	Imperial	Metric	Imperial	Metric
#4	13mm	[10]	17 lb-ft	23 Nm	-	-	9 lb-ft	12 Nm
#5	16mm	[15]	24 lb-ft	33 Nm	-	-	13 lb-ft	18 Nm
#6	19mm	[20]	33 lb-ft	45 Nm	-	-	18 lb-ft	24 Nm
#7	22mm	_	45 lb-ft	61 Nm	-	-	24 lb-ft	33 Nm
#8	25mm	[25]	60 lb-ft	81 Nm	-	-	32 lb-ft	43 Nm
#9	29mm	[30]	62 lb-ft	84 Nm	-	-	33 lb-ft	45 Nm
#10	32mm	_	69 lb-ft	94 Nm	-	-	37 lb-ft	50 Nm
#11	36mm	[35]	75 lb-ft	102 Nm	-	-	40 lb-ft	54 Nm
#14	43mm	[45]	91 lb-ft	124 Nm	57 lb-ft	77 Nm	-	-
#18	57mm	[55]	99 lb-ft	135 Nm	70 lb-ft	95 Nm	-	-

D-340 TAPER-LOCK FLANGE COUPLER

PRODUCT DESCRIPTION:

The D-340 Taper-Lock simplifies the forming process by eliminating the need to cut or drill the formwork. It is used for segmental pours, precast applications, formed applications, and future work applications.

PRODUCT FEATURES AND BENEFITS:

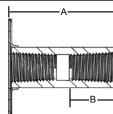
- · Reduces engineering design time
- · Provides a safer working environment by eliminating protruding rebar ends through the formwork
- Eliminates the need to cut or drill formwork
- · Eliminates rebar congestion
- Provides Type 2 splicing capacities (160% F_y) and simplifies load paths
 Meets approval from ICC (ESR 2481), ACI, CalTrans, IBC 2006, and Ministries of Transportation for Ontario and Quebec, Canada
- · Approved for use in fatigue applications

PRODUCT SPECIFICATIONS:

- · Extension of Taper-Lock product line
- · Accommodates rebar sizes #4 through #18
- · Available in Black or Epoxy
- Type 2 Splice (160% of F_v)
- · Fastened to formwork by nails
- · Each end must be tightened with calibrated torque wrench

PRODUCT CODES

	US Metric CN (mm) (m)		Made in USA	Made in the USA	Made in the USA			
US					(Black) ASTM A311 Grade 1144	(Epoxy) ASTM A311 Grade 1144	(Hot dipped Galva- nized) ASTM A311 Grade 1144	
#4	[13]	[10]	127790	127847	128078	127881	128342	
#5	[16]	[15]	127791	127848	128079	127882	128343	
#6	[19]	[20]	127792	127849	128080	127885	128344	
#7	[22]	-	127793	127850	128081	127888	128345	
#8	[25]	[25]	127794	127851	128082	127890	128346	
#9	[29]	[30]	127795	127852	128083	127892	128347	
#10	[32]	-	127796	127853	128084	127894	128348	
#11	[36]	[35]	127797	127854	182085	127896	128349	
#14	[43]	[45]	127798	127855	128313	128373	128350	
#18	[57]	[55]	127799	127856	128314	128374	128351	


HOW TO ORDER: SPECIFY:

1. Quantity

- 2. Name
- 3. Rebar size
- 4. Finish
- 5. Made in USA requirement

EXAMPLE:

- 1. 500 pieces
- 2. D-340 Taper-Lock® Flange Coupler
- 3. #6
- 4. Black
- 5. Made in USA not required

NOMINAL ENGAGEMENT

	Bar Size		" <i>I</i>	λ"	"B"		
US	Metric CN [MM] [M]		US	[mm]	US	[mm]	
#4	[13]	[10]	2.362	[60]	1.024	[26]	
#5	[16]	[15]	2.756	[70]	1.221	[31]	
#6	[19]	[20]	2.874	[73]	1.281	[32.5]	
#7	[22]	_	3.189	[81]	1.399	[35.5]	
#8	[25]	[25]	3.622	[92]	1.615	[41]	
#9	[29]	[30]	4.016	[102]	1.812	[46]	
#10	[32]	-	4.488	[114]	2.049	[52]	
#11	[36]	[35]	4.921	[125]	2.246	[57.5]	
#14	[43]	[45]	5.827	[148]	2.719	[69]	
#18	[57]	[55]	7.638	[194]	3.625	[92]	

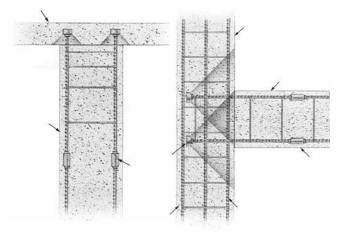
TOROUE SETTINGS

TORQU	L JLIII	11405			Di					
			Taper-Lo	ck Coupler	Torque Ch	art				
	Rebar Size Applied Torque					Wrench Setting				
US	Metric	CN	Imperial	Metric	Lar	ge	Sm	all		
03	[MM]	[M]			Imperial	Metric	Imperial	Metric		
#4	13mm	[10]	55 lb-ft	75 Nm	-	-	39 lb-ft	53 Nm		
#5	16mm	[15]	81 lb-ft	110 Nm	62 lb-ft	84 Nm	57 lb-ft	77 Nm		
#6	19mm	[20]	111 lb-ft	150 Nm	85 lb-ft	115 Nm	78 lb-ft	106 Nm		
#7	22mm	_	151 lb-ft	205 Nm	116 lb-ft	157 Nm	105 lb-ft	143 Nm		
#8	25mm	[25]	199 lb-ft	270 Nm	153 lb-ft	207 Nm	139 lb-ft	188 Nm		
#9	29mm	[30]	207 lb-ft	280 Nm	159 lb-ft	215 Nm	146 lb-ft	198 Nm		
#10	32mm	_	210 lb-ft	285 Nm	162 lb-ft	219 Nm	147 lb-ft	199 Nm		
#11	36mm	[35]	225 lb-ft	305 Nm	173 lb-ft	234 Nm	-	-		
#14	43mm	[45]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-		
#18	57mm	[55]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-		

D-350 TAPER-LOCK END ANCHOR DISC

PRODUCT DESCRIPTION:

The D-350 Taper-Lock End Anchor Discs simplify rebar splicing in areas where rebar congestion prevents the use of long lap splices or large diameter hooked rebar. The D-350 Taper-Lock End Anchor Discs can be used for end anchoring, stirrup replacements, continuous splicing, and heavy anchorage of light standards and other signage.


PRODUCT FEATURES AND BENEFITS:

- · Eliminates rebar congestion and aids in concrete placement
- Eliminates the need for hooked rebar
- · Reduces engineering design time
- Provides Type 2 splicing capacities (160% F_v) and simplifies load paths
- · Improves safety related issues on the job site by reducing protruding dowels
- · Conforms to ASTM A-970, ACI, Cal Trans, IBC 2006 and Ministries of Transportation for Ontario and Quebec
- Develops full strength with hand-tighten installation

PRODUCT SPECIFICATIONS:

- · Extension of Taper-Lock product line
- · Accommodates rebar sizes #4 through #18
- · Available in Plain or Epoxy
- Type 2 Splice (160% F_y)
 Minimum Net Headed Bearing Area of 9Ab
- · ICC Approval pending

PRODUCT CODES - D-350 TAPER-LOCK END ANCHOR

	Bar Size		Made in the USA	Made in the USA	(DII-)		
US	Metric (mm)	CN (m)	(Black) ASTM A311 Grade 1144	(Epoxy) ASTM A311 Grade 1144	(Black) ASTM A576 Grade 1045	(Epoxy) ASTM A576 Grade 1045	
#4	[13]	[10]	127940	128017	128221	128332	
#5	[16]	[15]	127941	128018	128222	128333	
#6	[19]	[20]	127942	128019	128223	128334	
#7	[22]	-	127943	128020	128224	128335	
#8	[25]	[25]	127944	128021	128225	128336	
#9	[29]	[30]	127945	128022	128226	128337	
#10	[32]	-	127946	128023	128227	128338	
#11	[36]	[35]	127947	128024	128228	128339	
#14	[43]	[45]	127948	128025	128229	128340	
#18	[57]	[55]	127949	128026	128230	128341	

HOW TO ORDER:

SPECIFY:

- 1. Quantity
- 2. Name
- 3. Rebar size
- 4. Finish
- 5. Made in USA requirement

EXAMPLE:

- 1. 500 pieces
- 2. D-350 Taper-Lock® End Anchor Disc
- 3. #6
- 4. Black
- 5. Made in USA not required

04/10 37

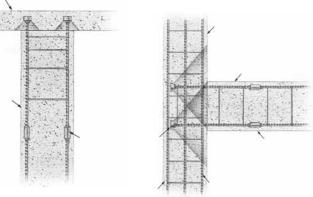
D-351 TAPER-LOCK END ANCHOR DISC

PRODUCT DESCRIPTION:

The D-351 Taper-Lock End Anchor Discs simplify rebar splicing in areas where rebar congestion prevents the use of long lap splices or large diameter hooked rebar. The D-351 Taper-Lock End Anchor Discs can be used for end anchoring, stirrup replacements, continuous splicing, and heavy anchorage of light standards and other signage.

PRODUCT FEATURES AND BENEFITS:

- Eliminates rebar congestion and aids in concrete place-
- Eliminates the need for hooked rebar
- Reduces engineering design time
- Provides Type 2 splicing capacities (160% F_v) and simplifies load paths
- Improves safety related issues on the job site by reducing protruding dowels
- Conforms to ASTM A-970. ACI, Cal Trans. IBC 2006 and Ministries of Transportation for Ontario and Quebec
- Develops full strength with hand-tighten installation


PRODUCT SPECIFICATIONS:

- Extension of Taper-Lock product line
- Accommodates rebar sizes #4 through #18
- Available in Plain or Epoxy
- Type 2 Splice (160% \dot{F}_{v}) Minimum Net Headed Bearing Area of 4Ab
- ICC Approval pending

PRODUCT CODES - D-351 TAPER-LOCK END ANCHOR

	Bar Size		Made in USA	Made in the USA				
US	(mm) (m)				(Black) ASTM A311 Grade 1144	(Epoxy) ASTM A311 Grade 1144	(Black) ASTM A576 Grade 1045	(Epoxy) ASTM A576 Grade 1045
#4	[13]	[10]	128430	128420	128375	128440		
#5	[16]	[15]	128431	128421	128376	128441		
#6	[19]	[20]	128432	128422	128377	128442		
#7	[22]	-	128433	128423	128378	128443		
#8	[25]	[25]	128434	128424	128379	128444		
#9	[29]	[30]	128435	128425	128380	128445		
#10	[32]	-	128436	128426	128381	128446		
#11	[36]	[35]	128437	128427	128382	128447		
#14	[43]	[45]	128438	128428	128383	128448		
#18	[57]	[55]	128439	128429	128384	128449		

HOW TO ORDER: SPECIFY:

- 1. Quantity
- 2. Name
- 3. Rebar size
- 4. Finish
- 5. Made in USA requirement

EXAMPLE:

- 1. 500 pieces
- 2. D-350 Taper-Lock® End Anchor Disc

04/10

- 5. Made in USA not required

38

D-352 TAPER-LOCK COLUMN CONNECTOR

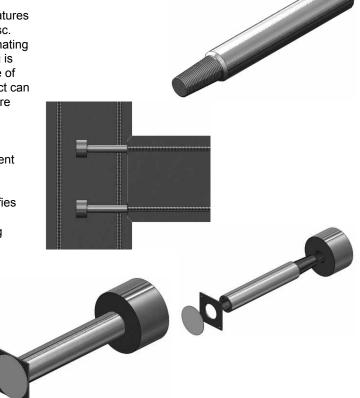
PRODUCT DESCRIPTION:

The D-352 Taper-Lock Column Connector combines the features of the D-340 Flange Coupler and the D-350 End Anchor Disc. This unique product simplifies the forming process by eliminating the need to cut or drill formwork. Additionally, rebar splicing is simplified in areas where rebar congestion prevents the use of long lap splices or large diameter hooked rebar. This product can be used for segmental pours, precast applications, and future work applications that require end anchorage.

PRODUCT FEATURES AND BENEFITS:

- · Eliminates rebar congestion and aids in concrete placement
- · Eliminates the need for hooked rebar
- · Reduces engineering design time
- Provides Type 2 splicing capacities (160% F_y) and simplifies load paths
- Improves safety related issues on the job site by reducing protruding dowels
- Conforms to ASTM A-970, ACI, Cal Trans, IBC 2006 and Ministries of Transportation for Ontario and Quebec
- Eliminates the need to cut or drill formwork

PRODUCT SPECIFICATIONS:


- · Extension of Taper-Lock product line
- · Accommodates rebar sizes #4 through #18
- · Available in Plain or Epoxy
- Type 2 Splice (160% F_{.,})
- · Minimum Net Headed Bearing Area of 9Ab
- · Fastened to formwork by nails

PRODUCT CODES

	Bar Size		Made in the USA	Made in the USA
US	Metric (mm)	CN (m)	(Black) ASTM A311 Grade 1144	(Epoxy) ASTM A311 Grade 1144
#4	[13]	[10]	128395	128410
#5	[16]	[15]	128396	128411
#6	[19]	[20]	128397	128412
#7	[22]	-	128398	128413
#8	[25]	[25]	128399	128414
#9	[29]	[30]	128400	128415
#10	[32]	-	128401	128416
#11	[36]	[35]	128402	128417
#14	[43]	[45]	128403	128418
#18	[57]	[55]	128404	128419

TAPER-LOCK TORQUE SETTING

			Taper-Lock	Coupler Tor	nue Chart			
	Rebar Size			olied Torque Wrench Setting				
	Metric	CN	1		Laı	rge	Sm	iall
US	(mm)	(M)	Imperial	Metric	Imperial	Metric	Imperial	Metric
#4	13mm	[10]	55 lb-ft	75 Nm	-	-	39 lb-ft	53 Nm
#5	16mm	[15]	81 lb-ft	110 Nm	62 lb-ft	84 Nm	57 lb-ft	77 Nm
#6	19mm	[20]	111 lb-ft	150 Nm	85 lb-ft	115 Nm	78 lb-ft	106 Nm
#7	22mm	_	151 lb-ft	205 Nm	116 lb-ft	157 Nm	105 lb-ft	143 Nm
#8	25mm	[25]	199 lb-ft	270 Nm	153 lb-ft	207 Nm	139 lb-ft	188 Nm
#9	29mm	[30]	207 lb-ft	280 Nm	159 lb-ft	215 Nm	146 lb-ft	198 Nm
#10	32mm	_	210 lb-ft	285 Nm	162 lb-ft	219 Nm	147 lb-ft	199 Nm
#11	36mm	[35]	225 lb-ft	305 Nm	173 lb-ft	234 Nm	-	-
#14	43mm	[45]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-
#18	57mm	[55]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-

HOW TO ORDER:

SPECIFY:

- 1. Quantity
- 2. Name
- 3. Rebar size
- 4. Finish

EXAMPLE:

- 1. 500 pieces
- 2. D-352 Taper-Lock® Column Connector
- 3. #6
- 4. Black

D-360 TAPER-LOCK WELDABLE COUPLER

PRODUCT DESCRIPTION:

The Taper-Lock D-360 weldable couplers provide a convenient means of connecting reinforcing bars to structural steel plates or sections. Shorter than the standard coupler, it has a tapered thread at one end. The other end is welded directly to the steel.

The couplers are produced in either ASTM A576 grade 1045 or ASTM A108 grade C1018.

The Taper-Lock weldable coupler is suitable for welding to structural steels. The load conditions at the connection must be determined by the engineer along with the type and size of weld required. Another important consideration is the type of electrode to be used, which must be matched to the properties of the plate and tube, and to the site conditions under which the welding will be undertaken. Welders should be qualified for the type of weld required.

- The compact design of the coupler ensures suitability for use in confined situations where space is restricted or where the loss of cover must be minimized
- Reduces engineering design time
- Eliminates rebar congestion
- \bullet Provides Type 2 splicing capacities (160% $\mathrm{F_y})$ and simplifies load paths
- Meets approval from ICC (ESR 2481), ACI, CalTrans, IBC 2006, and Ministries of Transportation for Ontario and Quebec
- Approved for use in fatigue applications

PRODUCT SPECIFICATIONS:

- · Extension of Taper-Lock product line
- · Accommodates rebar sizes #4 through #18
- Type 2 Splice (160% of F_v)
- Must be tightened with calibrated torque wrench

HOW TO ORDER:

SPECIFY:

- 1. Quantity
- 2. Name
- 3. Rebar size

EXAMPLE:

- 1. 500 pieces
- 2. D-360 Taper-Lock® Weldable Coupler
- 3. #6

PRODUCT CODES

	Bar Size		Made in USA
US	Metric (mm)	CN (m)	ASTM A576, Grade1045 or ASTM A108, Grade C1018
#4	[13]	[10]	128385
#5	[16]	[15]	128386
#6	[19]	[20]	128387
#7	[22]	-	128388
#8	[25]	[25]	128389
#9	[29]	[30]	128390
#10	[32]	-	128391
#11	[36]	[35]	128392
#14	[43]	[45]	128393
#18	[57]	[55]	128394

TORQUE SETTINGS

			Таре	er-Lock Coupl	er Torque Ch	art			
	Rebar Size		Applied	Torque	Wrench Setting				
US	Metric	CN	Imperial	Metric	Lar	ge	Sm	nall	
03	(mm)	(M)	Шрепа	wethe	Imperial	Metric	Imperial	Metric	
#4	13mm	[10]	55 lb-ft	75 Nm	-	-	39 lb-ft	53 Nm	
#5	16mm	[15]	81 lb-ft	110 Nm	62 lb-ft	84 Nm	57 lb-ft	77 Nm	
#6	19mm	[20]	111 lb-ft	150 Nm	85 lb-ft	115 Nm	78 lb-ft	106 Nm	
#7	22mm	_	151 lb-ft	205 Nm	116 lb-ft	157 Nm	105 lb-ft	143 Nm	
#8	25mm	[25]	199 lb-ft	270 Nm	153 lb-ft	207 Nm	139 lb-ft	188 Nm	
#9	29mm	[30]	207 lb-ft	280 Nm	159 lb-ft	215 Nm	146 lb-ft	198 Nm	
#10	32mm	_	210 lb-ft	285 Nm	162 lb-ft	219 Nm	147 lb-ft	199 Nm	
#11	36mm	[35]	225 lb-ft	305 Nm	173 lb-ft	234 Nm	-	-	
#14	43mm	[45]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-	
#18	57mm	[55]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-	

Cyclic Test Results - Compression

Bar Size	Bar Area	Comp	oressive Str	ength
	(in2)	(kips)	(ksi)	(%fy=60)
4	0.20	18	90	150%
5	0.31	27.9	90	150%
6	0.44	39.6	90	150%
7	0.60	54	90	150%
8	0.79	71.1	90	150%
9	1.00	90	90	150%
10	1.27	106.7	84	140%
11	1.56	140.4	90	150%
14	2.25	175	77.8	130%
18	4.00	333.6	83.4	139%

Cyclic Test Results - Standard Specimens

Bar Size	Bar Area (in2)		Cyclic Load Levels (Stages 1, 2, 3)				Tensile Strength (Stage 4)			
		Pmin (kips)	Pmax1 (kips)	Pmax2 (kips)	Pmax3 (kips)	(kips)	(ksi)	(%fy=60)	(%fua)	
4	0.20	-6	11.4	12.0	13.1	19.7	98.3	163.6	99.2	
5	0.31	-9.3	17.7	18.3	20.66	31.1	100.32	167.2	97.6	
6	0.44	-13.2	25.1	27.22	29.24	42.44	96.44	160.8	97.6	
7	0.60	-18	34.2	37.64	39.38	58.56	97.6	162.8	77.996	
8	0.79	-23.7	45	52.76	54.56	78.58	99.46	165.6	96.6	
9	1.00	-30	57	65.72	71.62	97.96	97.96	163.4	96	
10	1.27	-38.1	72.4	95.66	98.98	122.26	96.26	160.6	98.2	
11	1.56	-46.8	88.9	97.46	111.18	153.1	98.16	163.8	96.4	
14	2.25	-67.5	128.3	156.86	173.9	226.56	100.68	167.8	97	
18	4.00	-120	228	339.6	375.2	421.14	105.3	175.6	88.8	

Cyclic Test Results - Position/Transition Specimens

Bar Size	Coupler Type	Bar Area		•	oad Levels s 1, 2, 3)	3		Tensile Strength (Stage 4)		
		(in2)	Pmin (kips)	Pmax1 (kips)	Pmax2 (kips)	Pmax3 (kips)	(kips)	(ksi)	(%fy=60)	(%fua)
4	4/5 Transition	0.20	-6	11.4	12.2	12.9	19.5	97.3	162.2	98.0
5	5/6 Transition	0.31	-9.3	17.7	18.4	20.5	30.8	99.2	165.6	96.8
6	6 Position	0.44	-13.2	25.1	27.2	28.0	42.7	97.1	162.0	98.4
7	7/8 Transition	0.60	-18	34.2	37.4	39.5	58.8	98.0	163.2	98.0
8	8 Position	0.79	-23.7	45.0	53.1	55.1	78.5	99.4	165.4	96.6
9	9/10 Transition	1.00	-30	57.0	66.4	72.6	98.0	98.0	163.2	96.0
10	10 Position	1.27	-38.1	72.4	95.3	98.1	121.3	95.5	159.2	97.2
11	11/14 Transition	1.56	-46.8	88.9	97.9	111.9	156.1	100.0	167.0	98.6
14	14 Position	2.25	-67.5	128.3	150.4	181.7	223.5	99.3	165.6	87.4

TORQUE WRENCHES

It is important that the taper thread couplers fitted to a threaded rebar are applied with a known torque. This ensures that the finished coupling will perform properly and conform to the published specifications. Obviously, as with any threaded joint, any

variation in the applied torque will affect the joint performance. By gauging the thread on the rebar the User can be certain that the thread diameters, thread length and thread pitch will be correct and can be used successfully with a Taper-Lock Coupler.

In order to ensure that the correct torque is applied to the coupling DSC recommends the use of the Torque wrenches, which are especially produced to suit the specific requirements of the coupler range.

It is important for the User to understand the correct method of using a torque wrench and how to apply the torque using the wrench.

GENERAL INSTRUCTIONS:

- The wrench is a precision instrument that has been produced to suit the rugged industrial conditions it is likely to be used in. However, it is essential that the User treats the wrench with care, uses it properly and stores it correctly when it is not in use.
- The torque wrench is to be used solely for the purpose of applying known torque's to the rebar/coupler joints.
- It is not to be used for any other makes of couplers.
- Do not use the torque wrench for any purpose other than that for which it is supplied.
- When using this wrench torque must be applied in a smooth and continuous fashion until the correct set torque is reached. Do not snatch or jerk the wrench as this will result in false readings.
- Do not use the wrench as a general pipe wrench, it is to be used for the application of specific torques only.
- Do not try and exceed its minimum or maximum values. Always stay within the specific range of the wrench.
- Do not the wrench as a hammer or a lever. It is a precision instrument.
- · When not being used the wrench should be laid safely to one side and protected from dirt, dust and rain.
- The torque wrench assembly cannot be cleaned with a gasoline or kerosene.
- If there is any doubt regarding the performance of the torque wrench it must be replaced. Do not use a wrench known to be faulty.
- Use the correct size torque wrench for the appropriate diameter, component and torque setting.

CALIDDATION	OF THE TOROL	IE WIDENICH.
CALIBRATION	OF THE TOROL	JE WKENCH:

Each torque wrench is supplied with a calibration certificate. This certificate must be kept in a safe place allowing it to be referred to when required. This certificate shows the serial number of the wrench, the date it was calibrated and the values that the wrench should be set to for a specific requirement. This is detailed in the following part of this section.

An example certificate is as attached. The certificate shows the details of the wrench and the serial number of the wrench assembly. The bottom part of the certificate is a table, which shows the Required Torque, the Set Torque and the Calibration Diameter.

It is important to understand the way in which this table is generated and used. This is dealt with in the next part of this section of the manual.

			Taper-Lock L	ocking Nut 1	orque Chart				
	Rebar Size		Applied	Torque		Wrench Setting			
US	Metric	CN	1	Metric	Lar	ge	Sm	nall	
05	(mm)	(M	Imperial	Metric	Imperial	Metric	Imperial	Metric	
#4	13mm	[10]	17 lb-ft	23 Nm	-	-	9 lb-ft	12 Nm	
#5	16mm	[15]	24 lb-ft	33 Nm	-	-	13 lb-ft	18 Nm	
#6	19mm	[20]	33 lb-ft	45 Nm	-	-	18 lb-ft	24 Nm	
#7	22mm	_	45 lb-ft	61 Nm	-	-	24 lb-ft	33 Nm	
#8	25mm	[25]	60 lb-ft	81 Nm	-	-	32 lb-ft	43 Nm	
#9	29mm	[30]	62 lb-ft	84 Nm	-	-	33 lb-ft	45 Nm	
#10	32mm	_	69 lb-ft	94 Nm	-	-	37 lb-ft	50 Nm	
#11	36mm	[35]	75 lb-ft	102 Nm	-	-	40 lb-ft	54 Nm	
#14	43mm	[45]	91 lb-ft	124 Nm	57 lb-ft	77 Nm	-	-	
#18	57mm	[55]	99 lb-ft	135 Nm	70 lb-ft	95 Nm	-	-	

	Taper-Lock Coupler Torque Chart											
	Rebar Size		Applied	Torque	Wrench Setting							
US	Metric	CN	1	Metric	La	rge	Sm	nall				
"	(mm)	(M	Imperial	Metric	Imperial	Metric	Imperial	Metric				
#4	13mm	[10]	55 lb-ft	75 Nm	-	-	39 lb-ft	53 Nm				
#5	16mm	[15]	81 lb-ft	110 Nm	62 lb-ft	84 Nm	57 lb-ft	77 Nm				
#6	19mm	[20]	111 lb-ft	150 Nm	85 lb-ft	115 Nm	78 lb-ft	106 Nm				
#7	22mm	_	151 lb-ft	205 Nm	116 lb-ft	157 Nm	105 lb-ft	143 Nm				
#8	25mm	[25]	199 lb-ft	270 Nm	153 lb-ft	207 Nm	139 lb-ft	188 Nm				
#9	29mm	[30]	207 lb-ft	280 Nm	159 lb-ft	215 Nm	146 lb-ft	198 Nm				
#10	32mm	_	210 lb-ft	285 Nm	162 lb-ft	219 Nm	147 lb-ft	199 Nm				
#11	36mm	[35]	225 lb-ft	305 Nm	173 lb-ft	234 Nm	-	-				
#14	43mm	[45]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-				
#18	57mm	[55]	247 lb-ft	335 Nm	190 lb-ft	257 Nm	-	-				

Sleeve-Lock™ Grout Sleeve

D-410 Sleeve-Lock™ Grout Sleeve

The Dayton Superior Sleeve-Lock Grout Sleeve is a one-piece mechanical coupler designed to butt-splice reinforcing steel in concrete structures. The Sleeve-Lock is available in seven (7) sizes to accommodate deformed bar sizes #4 through #18. Bars of like size or of different sizes can be effectively spliced by the System. Typical Sleeve-Lock applications include precast and cast-in-place concrete structures.

The Sleeve-Lock is a ductile casting with a minimum yield strength of 55,000 psi and a minimum tensile strength of 80,000 psi. It exceeds all known building codes and agency standards. The System achieves 160% fy strength criteria with the Dayton Superior S-L Grout™ high strength, non-shrink grout.

FIELD END

STACKING FEET

MADE IN USA

REBAR STOP

STANDARD FORT SIZE

The Sleeve has several unique features:

- Rebar Stop An integrated post that acts as a precise stop when inserting rebar
- Alignment Fins Positioning fins that keep inserted rebar centered
- Standard Port Sizes Ports designed to accept standard 0.75" SCH40 PVC; ports use the same size PVC
- Stacking Feet Feet used to stabilize the product during shipping and on the shelf while assisting in wire-tying and acting as a platform for a rebar chair.
- Made In USA The sleeve is 100% made in the USA.

	SIZE		SLEEV	E-LOCK"	DIMEN	SIONS		RI	BAR EMBED	MENT LENGT	ГН
'	DIZE	Α	В	С	D	G	Н	E, MAX	E, MIN	F, MAX	F, MIN
#4	13MM	2.14	1.26	0.87	2.14	9.50	0.25	4.63	3.30	4.63	3.30
#5	16MM	2.14	1.26	0.87	2.14	9.50	0.25	4.63	4.13	4.63	4.13
#6	19MM	2.61	1.73	1.14	2.61	13.00	0.25	6.38	4.92	6.38	4.92
#7	22MM	2.61	1.73	1.14	2.61	13.00	0.25	6.38	5.71	6.38	5.71
#8	25MM	2.89	2.89	1.42	2.89	16.52	0.38	8.07	6.50	8.07	6.50
#9	29MM	2.89	2.89	1.42	2.89	16.52	0.38	8.07	7.40	8.07	7.40
#10	32MM	3.04	2.16	1.57	3.04	17.99	0.50	8.75	8.19	8.75	8.19
#11	36MM	3.32	2.32	1.73	3.32	19.54	0.50	9.52	8.98	9.52	8.98
#14	43MM	3.73	2.60	2.01	3.73	24.50	0.50	12.00	11.42	12.00	11.42
#18	57MM	4.77	3.27	2.68	4.77	36.00	0.50	17.75	17.00	17.75	17.00

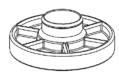
All dimensions are in inches

D-490 S-L Grout™

S-L Grout™ is specifically designed and manufactured by DSC for the Sleeve-Lock™ System. It is a flow-able grout capable of achieving 11,000ksi when mixed following the recommended mixing instructions of DSC. Available in 50lb bags, yield per bag, noting that grout used in PVC tubing is not accounted for, is as shown in Table 2:

SI	ZE	SLEEVES PER BAG OF GROUT
#4	13MM	37
#5	16MM	40
#6	19MM	16
#7	22MM	30
#8	25MM	11
#9	29MM	11
#10	32MM	9
#11	36MM	8
#14	43MM	5
#18	57MM	3

Amounts are approximate.


Use only potable water for mixing. A 50 pound (22.7 kg) of grout will require approximately 6.5 pints (3.07 liters) of water to achieve a flowable consistency. The water amount can be adjusted +/- 0.5 pints (0.23 liters) to achieve desired consistency. Determine correct water amount by mixing of a test batch prior to commencing grouting operation.

Sleeve-Lock™ Grout Sleeve

D-487 Sleeve-Lock™ Seal Plug

The Sleeve-Lock™ Seal Plug is a rubberized plug used to seal the connection between the Sleeve-Lock™ Grout Sleeve and the reinforcing bar. It is designed to keep concrete from entering the inner cavity of the Sleeve-Lock™ Grout Sleeve on the Factory End and to contain the pumped in grout on the Field End. Per size, the Sleeve-Lock™ Seal Plug can be used on either end meaning that only 1 size Sleeve-Lock™ Seal Plug (QTY 2) per sleeve need be stocked.

D-491 Sleeve-Lock™ Form Plug

The Sleeve-LockTM Form Plug is a device using a rubberized grommet and a clamping device and used to attach the Sleeve-LockTM Grout Sleeve to a piece of formwork i.e. steel, lumber, composite. It is designed to fasten the sleeve to the formwork while keeping concrete out of the sleeve's inner chamber. It is to be used on the Field End only and is not designed to be used as a structural connection.

D-492 Sleeve-LockTM 3/4" SCH40 PVC

The Sleeve-Lock™ ¾" SCH40 PVC is standard, off the shelf, PVC, used to fill the inner chamber of the Sleeve-Lock™ Grout Sleeve. Either port of the sleeve uses the same size PVC. It is available locally or through DSC.

D-493 Sleeve-Lock™ Port Plug

The Sleeve-LockTM Port Plug is a plastic plug used during jobsite shipping to plug the ports in order to keep debris from entering the inner chamber of the sleeve. They can also be used to plug the PVC before or after grouting. One size will fit either end port or PVC.

How to Specify:

Specific: Mechanical splices shall be the Sleeve-Lock™ Grout Sleeve System manufactured by Dayton Superior Corporation.

Generic: The mechanical connection shall meet building code requirements of developing in tension and compression, as required, by local standards and codes. Grouting must be performed in accordance with the manufacturer's recommended grouting procedures.

Dayton Shear Resistance DSR Products

ICC Evaluation Report ESR-2696

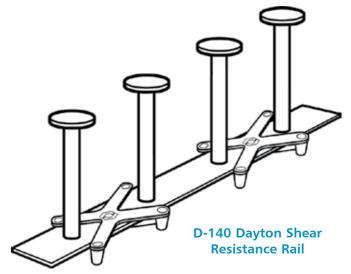
Dayton Shear Resistance DSR Products are a cost effective solution to punching shear at column/slab connections. DSR System rails reduce congestion around the column connections, while at the same time dramatically reducing labor costs.

DSR System rails are typically used in post tension and reinforced concrete slabs with direct loading on the columns. Drop panels, beams and column capitals may be

eliminated to allow efficient use of flying forms.

Installation of DSR System rails in foundations will increase the punching shear capacity at the base of the columns and in the pile caps. This can provide significant reduction in slab thickness and substantial savings in material, excavation and concrete pumping costs.

DSR System rails can also be used in place of hairpins to eliminate congestion in post-tensioned tendon anchorage zones. One DSR System rail replaces a series of hairpins to provide time, labor and material savings.


Specifications

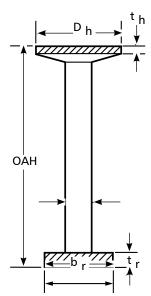
Dayton Shear Resistance DSR Products are fabricated with special studs, either studwelded or mechanically crimped to a steel rail.

Material Specifications:

- Shear studs Low carbon steel, C1015 in accordance with ASTM A108.
- Yield Strength 51,000 psi minimum.
- ◆ Tensile Strength 65,000 psi minimum.
- ◆ Elongation in 2" 20%

To develop the full yield strength of the studs in tension, the chart below shows standard dimensions that are applicable.

Typical Specifications


Specific:

Punching shear reinforcement shall be Dayton Shear Resistance (DSR) as manufactured by Dayton Superior Corporation.

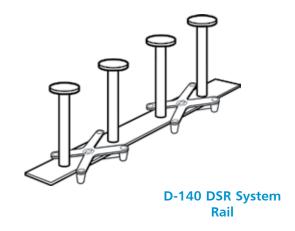
Generic:

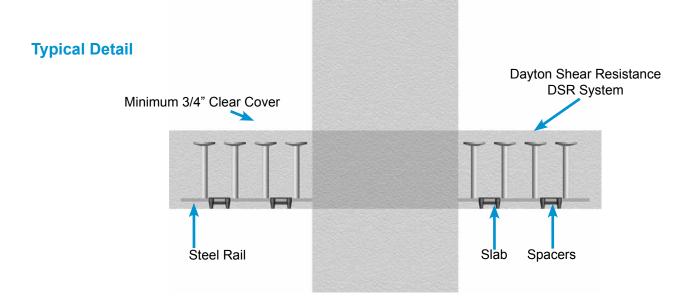
The punching shear reinforcement at the slabto-column connection as depicted on the drawings shall meet building codes as required by______ (insert name here). The product shall be punching shear reinforcement studs welded to high quality flat steel. The product shall be ICC ES recognized and welding of the product will have occurred in an ICC ES approved and audited facility. The product shall be installed per the manufacturer's approved procedures.

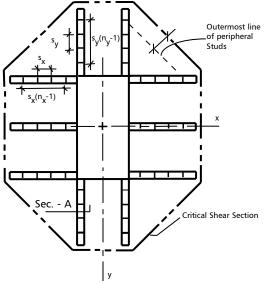
D in. (mm)	x-sect. area in ² (mm ²)	D _h in. (mm)	t _h in. (mm)	b _r in. (mm)	t _r in. (mm)	min. OAH in. (mm)
3/8	0.110	1.19	0.21	1	3/16	4
(9.5)	(71)	(30.1)	(5.3)	(25.4)	(4.8)	(100)
1/2	0.196	1.58	0.28	1-1/4	1/4	4
(12.7	(127)	(40.2)	(7.1)	(31.8)	(6.5)	(100)
5/8	0.307	1.98	0.35	1-3/4	5/16	5
(15.9)	(199)	(50.2)	(8.9)	(44.5)	(7.9)	(125)
3/4	0.442	2.37	0.42	2	3/8	5
(19.1)	(287)	(60.2)	(10.7)	(50.8)	(9.5)	(125)

Note: Overall height (OAH) of the stud is determined by the slab thickness and required concrete cover. Note: Stud welding is in accordance with American Welding Society (AWS) D1.1 and CSA Standard W59 as certified by the Canadian Welding Bureau.

Dayton Shear Resistance DSR Products




D-140 Dayton Shear Resistance DSR Products


Dayton Shear Resistance DSR Products feature a large, specially designed headed studs studwelded to a steel base rail. The heads are ten times the cross-sectional area of the stud's stem to provide superior anchorage and prevent slippage. The base plate ensures proper spacing and provides bottom anchorage.

Seismic Performance

The DSR System has been extensively tested and proven to withstand seismic movement and maintain connection stability long after other connection systems have failed. Lab test results show that DSR System rails provide superior ductility and lateral drift capacity compared to other systems.

46 y 04/10

Dayton Shear Resistance DSR Products

Installation

Installation of Dayton Shear Resistance DSR System is quick and easy. DSR System rails can normally be installed around a column/slab connection in less than five minutes.

Typical Installation Sequence:

- 1. Attach the furnished chairs to the base plate of each DSR System rail and place a chair top over the chairs at each end of the DSR System rail.
- 2. Properly position the DSR System rails on the formwork as per placement drawings.
- 3. Nail the chairs to the formwork using the blind holes in each chair leg. Repeat Steps 1, 2 and 3 for each DSR System rail.
- 4. After the DSR System rails are in place, the rebar, post-tensioning tendons, conduit and other embedded items may be set in the form. Since the tops of the DSR System rails are open, it is easy to place rebar or tendons between the studs.

Notes:

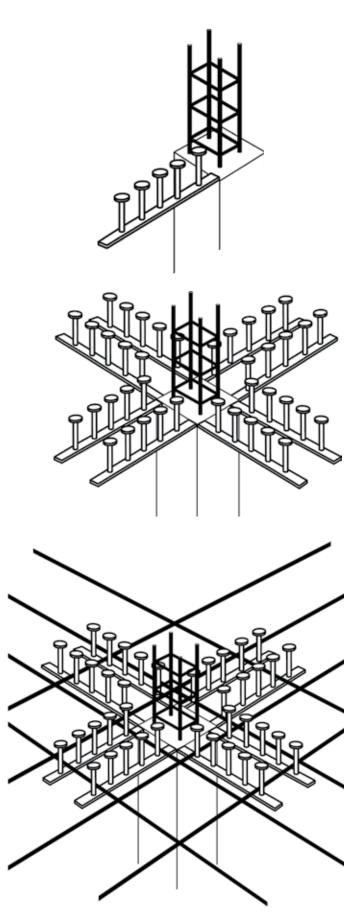
- 1. Dayton Shear Resistance DSR System must be placed and remain vertical in the slab.
- 2. Equally space DSR System rails when two or more are required on a single column face.

Information required for ordering:

- Project name
- Number of complete rails
- Stud diameter
- Number of studs per rails
- Rail OVERALL height
- Distance to the first stud
- Distance between studs
- Slab thickness
- · Bottom cover depth

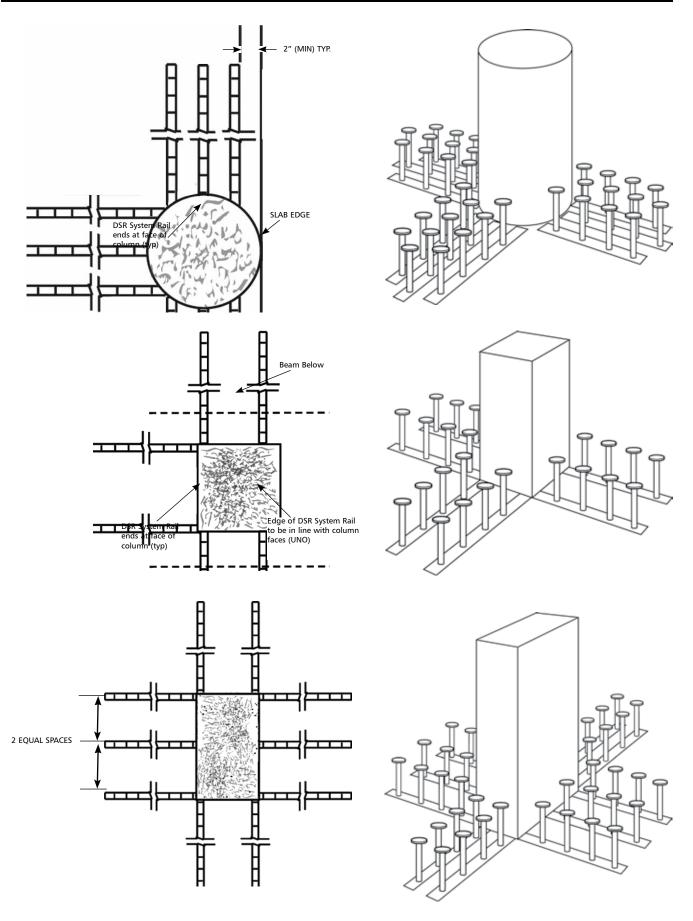
Example:

Project name	4th street parking garage
Number of complete rails	500
Stud diameter	1/2"
Number of studs per rails	8
Rail OVERALL height	6-1/2"
Distance to the first stud	3-0"
Distance between studs	3-1/2"
Slab thickness	8
Bottom cover depth	3/4"


REQUIRED FOR CONFIRMING PLACING DRAWINGS

Structural Engineer of Record

Name:

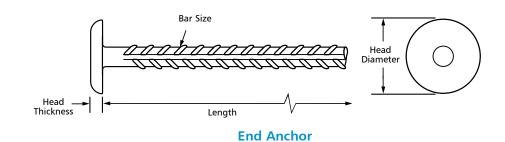

Address:

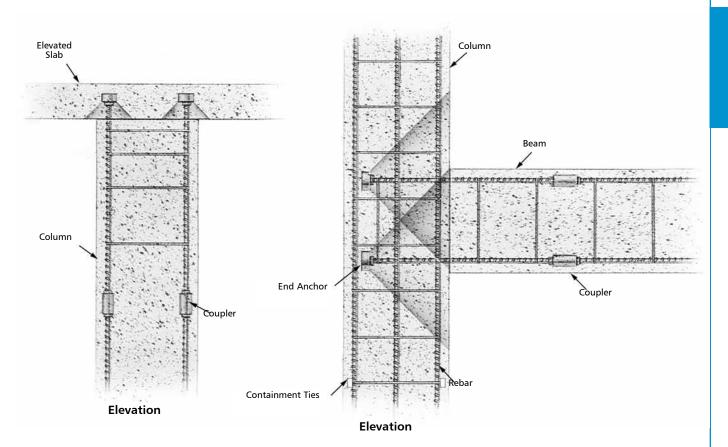
Phone:

48

04/10

End Anchorage System

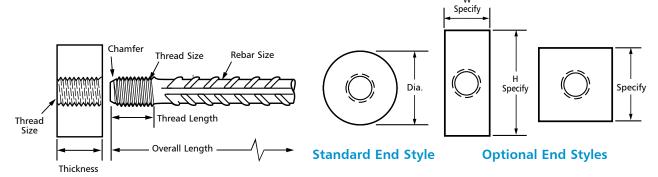

The Dayton Superior End Anchorage System is designed to simplify rebar splicing in areas where rebar congestion prevents use of long lap splices or large diameter hooked rebar. The system is designed around a single forge-headed unit in rebar sizes #4 through #11 and is available in various configurations to satisfy numerous applications. For sizes #14 and #18, the system utilizes Dayton Superior's inertia welding capabilities to provide for the heavier applications.


The system also has a two-piece threaded version of the end anchor, available in bar sizes #4 through #18. The two-piece version can be used effectively in situations where installation restrictions require a two-piece unit.

The Dayton Superior End Anchorage System provides a full ductile behavior mode developing ultimate strength capacity of the bars and can be effectively used for end anchoring, stirrup replacements, continuous splicing and heavy anchorage of light standards and other signage.

End Anchorage Advantages:

- Eliminates rebar congestion and aids in concrete placement.
- Eliminates the need for hooked rebar.
- Reduces engineering design time.
- Provides ultimate capacities and simplifies load paths.
- Improves safety related issues on the job site by reducing protruding dowels.
- Conforms to ASTM A-970.



D-158 Two-Piece End Anchor

The Dayton Superior D-158 Two-Piece End Anchor consists of a Dowel-In, or splice bar, and a round, square or rectangular anchor plate. The two-piece unit is available in bar sizes #4 through #18 and in various configurations, such as plain, female end, male end and double-ended. The two-piece unit is used effectively for many end anchorage applications where installation restrictions or congestion require the two piece version. The D-158 anchor is available in plain or epoxy coated finish. Alternate anchor plate diameters are available. Contact Dayton Superior Technical Service Department for additional information.

D-158 Two-Piece End Anchor

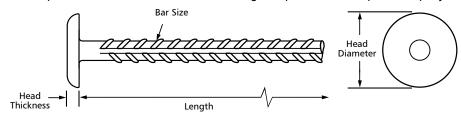
Е	Bar Size Designat	ion	Thread	Thread	Bar Area	Minimum Plate	Minimum	Available	Ultimate
US	Metric (mm)	CN (M)	Size	Length	(sq. in.)	Area (sq. in.)	Plate Thickness	End Sizes (Dia.)	Strength*
#4	[13]	[10]	5/8" -11 UNC	.875"	.200	2.000	.438"	1.6"	19,200 lbs.
#5	[16]	[15]	3/4"-10 UNC	1.000"	.310	3.100	.500"	2.0"	29,760 lbs.
#6	[19]	[20]	7/8"-9 UNC	1.125"	.440	4.440	.563"	2.4"	42,400 lbs.
#7	[22]	_	1"-8 UNC	1.250"	.600	6.000	.625"	2.8"	57,600 lbs.
#8	[25]	[25]	1-1/8"–8 UN	1.375"	.790	7.900	.625"	3.2"	75,840 lbs.
#9	[29]	[30]	1-1/4"-8 UN	1.500"	1.000	10.000	.688"	3.6"	96,000 lbs.
#10	[32]	_	1-7/16"-8 UN	1.688"	1.270	12.700	.750"	4.0"	121,920 lbs.
#11	[36]	[35]	1-9/16"-8 UN	1.813"	1.560	15.600	.813"	4.5"	149,760 lbs.
#14	[43]	[45]	1-7/8"–8 UN	2.125"	2.250	22.500	1.250"	5.4"	216,000 lbs.
#18	[57]	[55]	2-1/2"-8 UN	2.750"	4.000	40.000	1.625"	7.1"	384,000 lbs.

^{*}Ultimate Strength based on 160% f_y specified.

Compatible With All Dayton Superior Splicing Systems

To Order

Specify: (1) quantity, (2) name, (3) end style, (4) bar size, (5) overall length.


Example:

500, D-158 Two-Piece End Anchors, female end, #8 bar x 24" overall length.

D-158-B Plain End Anchor

The Dayton Superior D-158-B Plain End Anchor is a one-piece, forged-head anchor available in bar sizes #4 through #11. The D-158-B anchor has a plain end and can be furnished in lengths up to 60 feet in plain or epoxy-coated finish.

D-158-B Plain End Anchor (Forged Head)

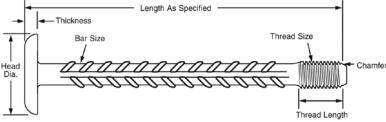
Bar Si	ze Design	ation	Bar	Head	Head	Ultimate
US	Metric (mm)	CN (M)	Diameter	Diameter	Thickness	Strength*
#4	[13]	[10]	.56."	1.596"	.438"	19,200 lbs
#5	[16]	[15]	.688"	1.987"	.500"	29,760 lbs
#6	[19]	[20]	875"	2.367"	.563"	42,400 lbs
#7	[22]	_	1.000"	2.764"	.625"	57,600 lbs
#8	[25]	[25]	1.125"	3.172"	.625"	75,840 lbs
#9	[29]	[30]	1.250"	3.569"	.688"	96,000 lbs
#10	[32]	_	1.375"	4.022"	.750"	121,920 lbs
#11	[36]	[35]	1.500"	4.457"	.813"	149,760 lbs

^{*}Ultimate Strength based on 160% f_y specified. Minimum Mfg. Length - 10" overall.

D-158-C Female End Anchor

The Dayton Superior D-158-C Female End Anchor is similar to the plain anchor except that the end is forged into a female end complete with UNC or UN threads and washer face. This version of the end anchor system is used effectively for continuous splicing, heavy anchorage for signs/light standards, etc. The D-158-C anchor is available in bar sizes #4 through #11 in plain or epoxy-coated finish.

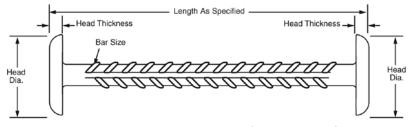
D-158-C Female End Anchor (Forged Head)


Bar Si	ize Design	ation	Head	Bar			Thread	Ultimate
US	Metric (mm)	CN (M)	Diameter	Diameter	Thickness	Thread Size	Length	Strength*
#4	[13]	[10]	1.596"	.500"	.438"	5/8"-11 UNC	.875"	19,200 lbs
#5	[16]	[15]	1.987"	.625"	.500"	3/4"-10 UNC	1.000"	29,760 lbs
#6	[19]	[20]	2.367"	.750"	.563"	7/8"-9 UNC	1.125"	42,400 lbs
#7	[22]	_	2.764"	.875"	.625"	1"-8 UNC	1.250"	57,600 lbs
#8	[25]	[25]	3.172"	1.000"	.625"	1-1/8"-8 UNC	1.375"	75,840 lbs
#9	[29]	[30]	3.569"	1.128"	.688"	1-1/4"-8 UNC	1.500"	96,000 lbs
#10	[32]	_	4.022"	1.270"	.750"	1-7/16"-8 UNC	1.688"	121,920 lbs
#11	[36]	[35]	4.457"	1.410"	.813"	1-9/16"-8 UNC	1.813"	149,760 lbs

^{*}Ultimate Strength based on 160% f_y specified. Minimum Mfg. Length - 10" overall.

D-158-D Male End Anchor

The Dayton Superior D-158-D Male End Anchor is similar to the D-158-C anchor except that the end is furnished with upsized UNC or UN male threads. The D-158-D anchor is available in bar sizes #4 through #11 in plain or epoxy-coated finish.


D-158-D Male End Anchor (Forged Head)

Bar Si	ize Design	ation	Head	Bar			Thread	Ultimate
US	Metric (mm)	CN (M)	Diameter	Diameter	Thickness	Thread Size	Length	Strength*
#4	[13]	[10]	1.596"	.500"	.438"	5/8"-11 UNC	.875"	19,200 lbs
#5	[16]	[15]	1.987"	.625"	.500"	3/4"-10 UNC	1.000"	29,760 lbs
#6	[19]	[20]	2.367"	.750"	.563"	7/8"-9 UNC	1.125"	42,400 lbs
#7	[22]	_	2.764"	.875"	.625"	1"-8 UNC	1.250"	57,600 lbs
#8	[25]	[25]	3.172"	1.000"	.625"	1-1/8"-8 UNC	1.375"	75,840 lbs
#9	[29]	[30]	3.569"	1.128"	.688"	1-1/4"-8 UNC	1.500"	96,000 lbs
#10	[32]	_	4.022"	1.270"	.750"	1-7/16"-8 UNC	1.688"	121,920 lbs
#11	[36]	[35]	4.457"	1.410"	.813"	1-9/16"-8 UNC	1.813"	149,760 lbs

^{*}Ultimate Strength based on 160% f_y specified. Minimum Mfg. Length - 10" overall.

D-158-E Double End Anchor

The Dayton Superior D-158-E Double End Anchor is fabricated with forged heads on both ends of the anchor. TheD-158-E anchor can be used effectively in bulkhead areas of heavy rebar congestion. The D-158-E anchor is available in bar sizes #4 through #11 in plain or epoxy-coated finish.

D-158-D Male End Anchor (Forged Head)

Bar Si	ze Design	ation	Head	Bar		Ultimate
US	Metric (mm)	CN (M)	Diameter	Diameter	Thickness	Strength*
#4	[13]	[10]	1.596"	.500"	.438"	19,200 lbs
#5	[16]	[15]	1.987"	.625"	.500"	29,760 lbs
#6	[19]	[20]	2.367"	.750"	.563"	42,400 lbs
#7	[22]	_	2.764"	.875"	.625"	57,600 lbs
#8	[25]	[25]	3.172"	1.000"	.625"	75,840 lbs
#9	[29]	[30]	3.569"	1.128"	.688"	96,000 lbs
#10	[32]		4.022"	1.270"	.750"	121,920 lbs
#11	[36]	[35]	4.457"	1.410"	.813"	149,760 lbs

^{*}Ultimate Strength based on 160% f_y specified. Minimum Mfg. Length - 10" overall.

Lockshear Bolt System

Dayton Superior Bar-Lock® Coupler System*

ICC Evaluation Report No. 2495

The Dayton Superior Bar-Lock Coupler System provides a simple, quick, cost effective method for splicing rebar in tension and/or compression applications. Bar-Lock couplers may be used with plain or deformed bars in sizes #4 through #18. Bar-Lock couplers utilize lock-shear bolts and special grip rails to mechanically splice with the rebar. The serrated grip rails cradle the rebar and are embedded in the rebar as the lock-shear bolts are tightened. The heads of the lock-shear bolts are designed to shear off at a prescribed torque in order to accomplish proper installation.

System Advantages:

- Quick and easy to install saves time and money.
- Eliminates bar threading and/or special bar end treatment.
- No special installation equipment required.
- High strength in tension, compression and seismic applications.

• Available in standard, transition and weldable versions in #4 through #18 sizes.

• Ideal for new construction and rehab projects.

Bar-Lock couplers are test-certified to exceed the requirements of, are pre-qualified and approved, or recognized by the following building approval agencies:

 International Conference of Building Officials (ICC)

- Building Officials and Code Administrators (BOCA)
- Southern Building Code Congress International (SBCCI)
- American Concrete Institute (ACI)
- Concrete Reinforcing Steel Institute (CRSI)
- City of Los Angeles Department of Building and Safety

Bar-Lock coupler source material is fabricated under ISO9000 quality standards. Bar-Lock couplers are tested by independent, certified testing laboratories in four modes of testing: tension, compression, fatigue and cyclic. All tests are done to the requirements of ICC and/or Caltrans requirements utilizing ASTM A615 grade 60 rebar material. Copies of test reports are available on request.

Typical Specification

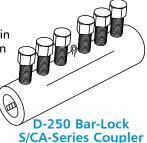
Specific:

• Mechanical connections shall be Bar-Lock® lockshear bolt couplers as manufactured by Dayton Superior Corporation.

Generic:

• The mechanical connection shall meet building code requirements of developing in tension and compression as required by _____ (insert name here). The mechanical connection shall be the positive butt splices utilizing lock shear bolts and internal serrated grip rails within the coupling sleeve manufactured from high quality steel. All couplers shall be installed per the manufacturer's approved procedures.

Typical Bar-Lock Coupler System Splice


*U.S. Patent No. 4,666,326 and 5,046,878

Lockshear Bolt System

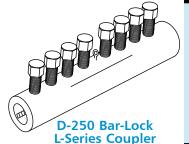
D-250 Bar-Lock® S/CA-Series Couplers

The D-250 Bar-Lock S/CA-Series Couplers are designed for use in most tension and compression applications. They are available in rebar sizes #4 through #18 and exceed 135% of specified yield of Grade 60 rebar. S/CA couplers are an approved Caltrans "Service" splice and are recognized by ICC, ACI and most State departments of Transportation. S/CA couplers are available in transition sizes, weldable half couplers.

To Order:

Specify: (1) quantity, (2) name, (3) coupler designation.

Example:


300, D-250 Bar Lock® S/CA-Series Couplers, 8S/CA.

Product	Caumlan	Bar Siz	ze Design	ation	Dawel Stame	Tube S	Specificat	ions	s	Bolt pecificat	ions	l	Meets or I	Exceeds	i
Code	Coupler Designation	US	Metric (mm)	CN (M)	Barrel Stamp Identification	Outside Diameter (in.)	Length (in.)	Weight (lbs.)	Bolt Qty.	Head Size (in.)	Nominal Shear Torque*	Min % Fy	CAL TRANS Service	ICC Type 1	ICC Type 2
400200	4 S/CA	#4	[13]	[10]	4SCA	1.3	3.9	1.0	2	0.5	40	135	YES	YES	
400201	5 S/CA	#5	[16]	[15]	5SCA	1.7	4.5	1.8	2	0.5	80	135	YES	YES	
400202	6 S/CA	#6	[19]	[20]	6SCA	1.9	6.3	3.5	3	0.5	80	135	YES	YES	
400203	7 S/CA	#7	[22]	_	7SCA	1.9	8.0	4.1	4	0.5	80	135	YES	YES	
400204	8 S/CA	#8	[25]	[25]	8SCA	2.2	10.2	7.6	4	0.625	180	135	YES	YES	
400205	9 S/CA	#9	[29]	[30]	9SCA	2.9	9.0	11.4	3	0.75	280	135	YES	YES	
400206	10 S/CA	#10	[32]	_	10SCA	2.9	11.5	15.5	4	0.75	350	135	YES	YES	
400207	11 S/CA	#11	[36]	[35]	11SCA	3.1	14.0	20.5	5	0.75	350	135	YES	YES	
400208	14 S/CA	#14	[43]	[45]	14SCA	3.5	16.5	26.0	6	0.75	350	135	YES	YES	
400209	18 S/CA	#18	[57]	[55]	18SCA	4.3	27.1	60.0	10	.75	475	135	YES	YES	

*Foot pounds. *S/CA Couoplers should not be used in conjunction with epoxy-coated rebar. The L-series should be used for epoxy -coated rebar applications.

D-250 Bar Lock L-Series Couplers

The D-250 Bar-Lock L-Series Coupler is similar to the Standard Coupler but is designed for use when higher loads are required, such as extreme tension/compression application and/or seismic loading conditions. L-Series couplers are available in rebar sizes #4 through #14 and exceed 160% of specified yield of Grade 60 rebar. L-Series couplers are approved for use by most state DOTs, are recognized as an ICC Type 2 seismic splice, and meet ACI specifications. L-Series couplers are also available in transition sizes, weldable half couplers and epoxy coated.

To Order:

Specify: (1) quantity, (2) name, (3) coupler designation, (4) if epoxy coating is required.

Example:

100, D-250 Bar Lock® L-Series Couplers, 8L, epoxy coated.

Produc	t Code	Bar Size Designation Coupler Barrel Stamp Barrel Stamp		-	Meets or Exceeds											
Black	Ероху	Designation	us	Metric (mm)	CN (M)	Identification	Outside Diameter (in.)	Length (in.)	Weight (lbs.)	Bolt Qty.	Head Size (in.)	Nominal Shear Torque*	Min % Fy*	CAL TRANS Service	ICC Type 1	ICC Type 2
400226	400235	4 L	#4	[13]	[10]	4L	1.3	5.5	1.6	3	0.5	40	160	YES	YES	YES
400227	400236	5 L	#5	[16]	[15]	5L	1.7	6.3	2.8	3	0.5	80	160	YES	YES	YES
400228	400237	6 L	#6	[19]	[20]	6L	1.9	8.0	4.5	4	0.5	80	160	YES	YES	YES
400229	400238	7 L	#7	[22]	_	7L	1.9	9.8	5.5	5	0.5	80	160	YES	YES	YES
400230	400239	8 L	#8	[25]	[25]	8L	2.2	12.3	9.5	5	0.625	180	160	YES	YES	YES
400231	400240	9 L	#9	[29]	[30]	9L	2.9	11.5	15.5	4	0.75	280	160	YES	YES	YES
400232	400241	10 L	#10	[32]	_	10L	2.9	14.0	19.5	5	0.75	410	160	YES	YES	YES
400233	400242	11 L	#11	[36]	[35]	11L	3.1	16.5	24.0	6	0.75	410	160	YES	YES	YES
400234	400243	14 L	#14	[43]	[45]	14L	3.5	19.1	32.0	7	0.75	410	160	YES	YES	YES

^{*}Foot pounds

^{**} When used in conjunction with epoxy-coated Grade 60 rebar, 135% F_V strength is developed.

Lockshear Bolt System

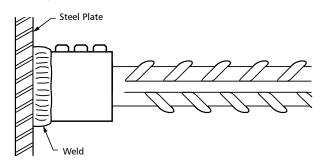
Bar-Lock® Transition Couplers

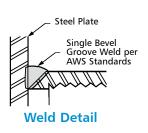
Bar-Lock Transition Couplers are used to splice two rebar of different diameters. Transition couplers are available in S/CA Series, L-Series and epoxy coated. Note sizes and other information about the respective coupler versions above.

Bar S	ize Designa	ation		Side A (s	mall side)			Side B (la	rge side)		Total
US	Metric (mm)	CN (M)	Barrel Size	Length (in.)	Bolt Qty.	Head Size (In.)	Barrel Size	Length (in.)	Bolt Qty.	Head Size (In.)	Length
#4	[13]	[10]	#4	2.22	2	0.5	5	2.53	8	0.5	4.75
#5	[16]	[15]	#6	3.15	3	0.5	6	3.15	3	0.5	6.30
#6	[19]	[20]	#7	5.08	3	0.5	8	5.08	4	0.625	10.16
#7	[22]	_	#8	5.33	3	0.625	10	6.00	4	0.75	11.33
#8	[25]	[25]	#9	5.75	4	0.75	10	5.75	4	0.75	11.50
#9	[29]	[30]	#11	7.01	5	0.75	11	7.01	5	0.75	14.02
#10	[32]	_	#10	6.00	4	0.75	14	8.52	6	0.75	14.52
#11	[36]	[35]	#11	7.26	5	0.75	14	8.52	6	0.75	15.75
#14	[43]	[45]	#14	8.52	6	0.75	18	13.83	10	0.75	22.35

This table lists commonly ordered transition sizes. Other sizes available. Transition Couplers are available in S/CA-Series (shown above) sizes #4-#18 and in L-Series in sizes #4-#14.

To Order:


Specify: (1) quantity, (2) name, (3) transition size, (4) if epoxy coating is required.


Example:

100, D-250 Bar-Lock® L-Series Transition Couplers, #7-#8, epoxy coated.

D-250 Bar-Lock Structural Steel Connectors

Bar-Lock Structural Steel Connectors (weldable half couplers) are designed to provide welded connections to structural steel members such as piles, weld plates, beams, columns, etc. Structural Steel Connectors are fabricated with a 45° chamfer to facilitate the welding operation. They are available in rebar sizes #4 through #18 in the S/CA-Series and #4 through #14 in the L-Series. Structural Steel Connectors are available in black and epoxy coated.

D-250 Bar-Lock Structural Steel Connector

Bar Size Designation				S/CA-Series		L-Series				
US	Metric (mm)	CN (M)	Structural Steel Connector Designation	Finished Length with Chamfer (in.)	Coupler Outside Diameter (in.)	Structural Steel Connector Designation	Finished Length with Chamfer (in.)	Coupler Outside Diameter (in.)		
#4	[13]	[10]	#4-SCA	2.7	1.3	#4-L	3.5	1.3		
#5	[16]	[15]	#5-SCA	3.0	1.4	#5-l	3.9	1.4		
#6	[19]	[20]	#6-SCA	3.9	1.6	#6-L	4.75	1.6		
#7	[22]	_	#7-SCA	4.75	1.6	#7-L	5.65	1.6		
#8	[25]	[25]	#8-SCA	5.85	2.2	#8-L	6.85	2.2		
#9	[29]	[30]	#9-SCA	5.25	2.6	#9-L	6.5	2.6		
#10	[32]	_	#10-SCA	6.5	2.6	#10-L	7.75	2.6		
#11	[36]	[35]	#11-SCA	7.75	3.1	#11-L	9.0	3.1		
#14	[43]	[45]	#14-SCA	9.0	3.5	#14-L	10.3	3.5		
#18	[57]	[55]	#18-SCA	14.3	4.3	_	_	_		

Ultimate strength depends on the strength of the field weld and the material to which the coupler is welded.

To Order:

Specify: (1) quantity, (2) name, (3) size.

Example:

300, D-250 Bar-Lock® Structural Steel Connectors, #7–SCA.

Lockshear Bolt System

Typical Bar-Lock® Coupler Installation

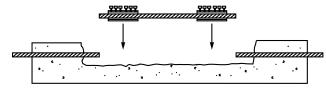
Bar-Lock couplers are easy to install and normally do not require any special training or rebar preparation. A typical installation procedure is as follows:

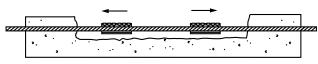
A. Procedure:

- 1. Insert end of the first bar halfway into the coupler to the center pin. Hold bar in place and hand-tighten all bolts.
- 2. Insert end of the second bar halfway into the coupler to the center pin. Hold bar in place and hand-tighten all bolts.
- 3. In a random alternating pattern, tighten all bolts to approximately 50% of the specified bolt torque value.
- 4. In a random alternating pattern, tighten all bolts to approximately 75% of the specified bolt torque value.

 5. Tighten all bolts.
- 5. Tighten all bolts in a random alternating pattern until all bolt heads shear off.

IMPORTANT NOTES:


- a. Prior to bolt tightening the serrated rails MUST remain aligned in the same position as they were manufactured. If damaged or knocked out of alignment while positioning, installation MUST cease and a new coupler used to replace damaged coupler.
- b. Bolt tightening MUST be done in a random alternating pattern similar to tightening the lug nuts on an automobile wheel (i.e., 2-4 1-3).


B. Installation Tools:

A high-quality 1" - drive pneumatic impact wrench is required for sizes #8 thru#18. The requirements for air flow is 100 psig of operating pressure and 185 cfm of delivered air to the impact wrench through a 3/4" - 1" air hose. Sizes #4 thru #7 may be installed with smaller impact wrenches.

C. Answers to frequently asked questions:

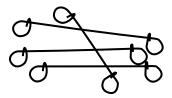
- 1. Approvals: Bar-Lock couplers exceed the requirements of the Uniform Building Code and state DOT's and are recognized by ICC report #ESR-2495.
- 2. Center-pin: Bar-Lock couplers are manufactured with a removable center-pin for easy reference to the center of the coupler. As each bar is inserted into the coupler it will butt against the center pin providing the confirmation the the rebar is inserted the proper distance within the coupler. The bar ends might not actually butt against one another.
- 3. Serrated rails: The internal grip rails are held into place by a simple "positional weld" only. During bolt tightening it is common this position weld may break loose, but this will not affect performance.
- 4. Shear bolts: The shearing of the bolt-heads simply confirms adequate torque has been achieved.
- **5. Bar-ends:** The rebar may be shear cut, flame cut or sawn and generally require no special bar-end preparation for use with Bar-Lock couplers.

Typical replacement of corroded or damaged rebar in existing concrete.

Testing

Bar-Lock source materials are fabricated under ISO9001 quality standards. Bar-Lock couplers are tested by independent, certified testing laboratories in four modes of testing: tension, compression, fatigue and cyclic. All tests are done to the the requirements of ICC and/or Caltrans utilizing ASTM A615 grade 60 and A706 grade 60 rebar material. Copies of test reports are available on request.

Epoxy-Coated Rebar Applications


Bar-Lock L-Series couplers should be used in conjunction with epoxy-coated rebar. When used with epoxy-coated Grade 60 rebar 135% Fy strength is developed. To achieve 160% Fy strength when using an L-Series coupler with epoxy-coated rebar, the epoxy must be completely removed from the rebar in the region where the coupler engages the rebar.

D-42 Bag Ties

The Dayton Superior D-42 Bag Ties are 16 gauge annealed loop-ended wire ties used for tying rebar and many other non-construction items such as bags and carpet rolls. Bag ties are stocked in 4", 5", 6", 7", 8", 10" and 12" lengths. Other lengths and gauges are available on special order. 4" through 8" bag ties are packaged in coils of 1,000 pieces, five coils per bag. 10" and 12" bag ties are packaged 2,500 pieces per bag.

D-42 Bag Ties

To Order:

Specify: (1) quantity (sold by bag and/or skid only), (2) name, (3) length.

Example:

5 bags, D-42 Bag Ties, 6" long.

D-45 Rebar Safety Cap

- Protects workers from protruding rebar
- Impalement protection
- One size fits #4 through #9 rebar
- Safety orange color
- Fully tested and approved (OSHA #C-1725-AC)
- Meets Cal OSHA max. drop test requirements
- Complies with Cal OSHA, Section 1712

D-46 Tie Wire

The Dayton Superior D-46 Tie Wire is 16 gauge, black annealed wire used to tie reinforcing steel. This soft, pliable wire is available in 3.5 pound coils with 385 feet of wire in each coil. Packaged twenty coils per carton and 48 cartons per skid.

D-46 Tie Wire

To Order:

Specify: (1) quantity (sold by carton and/or skid only), (2) name.

Example:

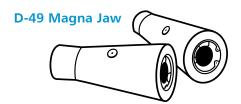
5 cartons, D-46 Tie Wire.

D-48 Sure-Guard Rebar Protective Cap

The Dayton Superior D-48 Sure-Guard Rebar Protective Caps have been developed to protect workmen from the hazards of protruding rebar. The D-48 cap is available in all rebar sizes, and packaged in bags of 50.

D-48 Sure-Guard Rebar Protector

To Order:


Specify: (1) quantity, (2) name, (3) bar size.

Example:

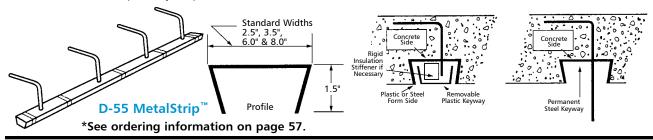
600, D-48 Sure-Guard Rebar Protective Caps for #6 rebar.

D-49 Magna Jaw

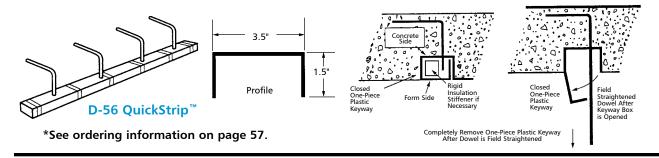
The Dayton Superior D-49 Magna Jaw is designed to speed Dowel-In or splice bar installation time. The D-49 Magna Jaw fits a 3/4" drive impact wrench and accommodates #4 through #8 rebar and 1/2" through 1" threaded bars. The tool automatically grips the bar and spins it into place, eliminating hand or wrench turning and greatly reducing installation time.

To Order:

Specify: (1) quantity, (2) name.


Example:

6, D-49 Magna Jaws.

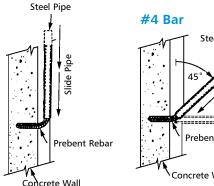

D-55 MetalStrip™

The Dayton Superior D-55 MetalStrip™ is a two-piece, prepackaged dowel bar keyway strip available in standard 48" lengths and 2-1/2", 3-1/2", 6" and 8" standard widths. The D-55 keyway is designed to stay in place. The ends are typically enclosed with duct tape or rigid insulation plugs. The D-55 keyway comes prepackaged with #4 or #5 ASTM A706 grade 60 bendable rebar shaped to job specifications.

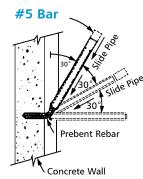
D-56 QuickStrip

The Dayton Superior D-56 QuickStrip™ is a one-piece plastic box, prepackaged dowel bar keyway strip. The D-56 keyway standard size is 1-1/2" deep, 3-1/2" wide and 48" long; other thicknesses and widths may be special ordered. The onepiece body is designed to be completely removed from the concrete to leave a clean keyway. The ends are usually closed with duct tape or rigid insulation plugs. The D-56 keyway is available with #4 or #5 ASTM A706 grade 60 bendable rebar configured to job specifications.

Proper Straightening Procedures


IMPORTANT: The probability of rebar breaks and cracks during straightening increases with cold bar temperatures and impact. User can significantly decrease the potential incidence of bar breaks or cracks when straightening if:

- A) The bar is free of frost and its temperature is above freezing.
- B) The bars are straightened with a proper inside diameter pipe in a 2 step process as described below.


STEP 1. Pry out 90° prebent rebar enough to allow steel pipe to slide over it. In some cases a crowbar may be necessary. Push pipe as tight as possible against factory bend. DO NOT ATTEMPT TO RE-STRAIGHTEN REBAR WITHOUT PIPE!

STEP 2. Once the pipe is as tight as possible against the factory bend, the rebar can be straightened using the pipe. Continue straightening until the position of #4 bars reach approximately 45° and the position of #5 bars reach approximately 30°. Then slide the pipe tight against the factory bend again and continue to bend #4 bars through another 45° and #5 bars through another 30°. The #4 bars will then be straightened, while the process described above needs to be repeated through another 30° for #5 bars. If properly executed, these procedures should result in offsets or kinks in the bend region between one-half and three-quarters of a bar diameter.

IMPORTANT: Proper field-restraightening procedures require that workmen have a firm footing from which to apply straightening pressure. A firm base is, of course, also important to reduce risk of injury if the bar would suddenly break during straightening.

How to Order D-55 MetalStrip™ and D-56 QuickStrip™

Legend	Α	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0	Р
Example	48	D-55	2	#4	8"	1.5"	2	L	G	6.6"	1.5"	48"	10"	16"	8"	-
Example	65	D-56	1	#5	12"	1"	_	L	С	3.5"	1.5"	48"	9"	20"	10"	_

B) Product Name

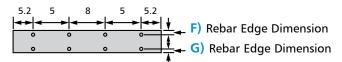
A) Quantity

Number of Pieces

D-55 MetalStrip™ D-56 QuickStrip™. All metal strips can be provided. Please note under Special Features.

C) Number of Positioned as follows, unless noted as a Special Feature (SF) **Rebar Lines**

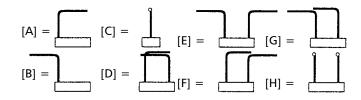
D) Rebar Size Available in #4 and #5 U.S.A. Made Grade 60 rebar with enhanced field rebendability


E) Rebar Spacing (inches)

No limitations on rebar spacing.

F) and G) Rebar

Each dimension is between the bar hole centerline and keyway edge. (The standard Edge Dimension(s) dimension is 1".) Use letter "C" to indicate hole should be centered in keyway width.


E) Rebar Spacing

H) Anchor Shape

Anchor Shape Legend "J" = AC1 180° STD Hook Geometry "L" = AC1 90° STD Hook Geometry "I" = Straight Bar "S" = Special Anchor Configuration [As specified by engineer and noted as Special Feature(SF)]

I) Anchor Direction **Anchor Direction Legend**

J) Keyway Strip

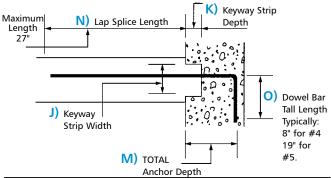
D-55 MetalStrip[™] available in standard widths of 2.5", 3.5", 6.0" and 8.0"

Width (inches)

D-56 QuickStrip™ available in 3.5" standard width.

K) Keyway Strip

Typically 1.5".


Depth (inches)

L) Keyway Strip Length (inches) Standard length 48".

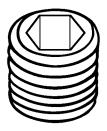
M) Total Anchor Depth (inches) Includes keyway depth

N) Lap Splice Length (inches)

O) Dowel Bar Tall Length (inches)

P) Special Features SF (Limited availability)

P-154 DB Attachment Magnet


The P-154 Attachment Magnet can be used to attach a DB, D-50, or D-110 coupler to a metal form. Simply thread the attachment into the coupler, and the magnet will attach to the metal form. Once the concrete has cured, pull the form work from the magnets. The re-usable Attachment Magnets can be removed from the threaded couplers.

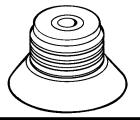
Product Code	Coupler Size	Face Diameter			Thread Size
126857	#4	2-1/4"	1"	3/4 "	5/8"-11 UNC
128161	#5	2-1/2"	1"	7/8"	3/4"-10 UNC
128162	#6	2-3/4"	1"	1"	7/8"-9 UNC
127769	#7	3"	1"	1-1/8"	1"-8 UNC
128163	#8	3"	1"	1-1/4"	1-1/8"-8 UN
128164	#9	3-1/4"	1"	1-3/8"	1-1/4"-8 UN
128165	#10	3-1/2"	1"	1-1/2"	1-7/16"-8 UN
128166	#11	3-3/4"	1"	1-5/8"	1-9/16"-8 UN

F-72 Threaded Steel Setting Plug

The Dayton Superior F-72 Threaded Steel Setting Plug eliminates the need for large holes in the form to secure splicing products. The F-72 plug is basically a socket set screw that has been drilled through and tapped with a #8-32 thread. This enables the plug to be nailed to a wood form or bolted to a metal form. The plugs can be easily removed from the splicer with a standard hex wrench and reused as needed. F-72 plugs are available in 3/8", 1/2", 5/8", 7/8" and 1" diameters.

F-72 Threaded Steel Setting Plug

To Order:


Specify: (1) quantity, (2) name, (3) diameter.

Example:

100, F-72 Threaded Steel Setting Plugs, 1/2" diameter.

F-74 Threaded Plastic Setting Plug

The Dayton Superior F-74 Threaded Plastic Setting Plug is similar to the F-72 plug with the exception of its plastic construction. The plug can be used to seal female splicing threads and to set the splicer in the form. F-74 plugs are available in 3/8" through 1" diameters.

F-74 Threaded Plastic Setting Plug

To Order:

Specify: (1) quantity, (2) name, (3) diameter.

Example

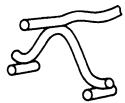
400, F-74 Threaded Plastic Setting Plugs, 5/8" diameter.

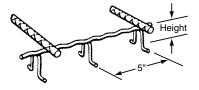
60

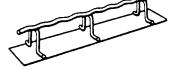
Supports for Rebar and Wire Mesh

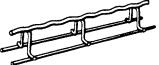
Dayton Superior manufactures a complete line of rebar and/or mesh supports. All Dayton Superior rebar supports are manufactured to the recommendations or specifications of the Concrete reinforcing Steel Institute (CRSI). Supports are available bright basic, plastic protected, epoxy coated and stainless steel for various corrosion resistance protection.

Dayton Superior rebar supports are shipped in convenient cartons, bundles or on skids and are clearly identified.

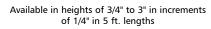



Epoxy-Coated

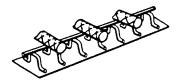

Plastic Tipped Feet


Stainless Steel Tips

SB-Slab Bolster


SBP-Slab Bolster with Plate

SBU-Slab Bolster Upper



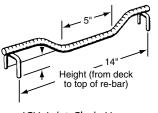
JC-Joist Chair Available in heights of 3/4" 1" and 1-1/2"

BB-Beam Bolster

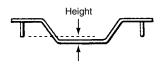
BBP-Beam Bolster with Plate

BBU-Beam Bolster Upper

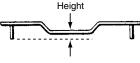
Available up to 5" in height in 1/4" increments. Available in 5' lengths.


HC-Individual High Chair (Plastic Tipped Legs Available)

HCP-Individual High Chair with Plates



FHC-High Chair for Fill


Available in heights of 2" to 40" in increments of 1/4"

JCU-Joist Chair Upper Available in heights of -1" to +3-1/2"

Style 1 From -1/4" to -1"

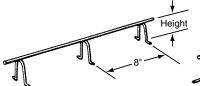
Style 2 From 0" to +1"

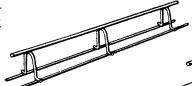
Style 3

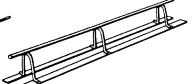
From + 1-1/4" to + 3-1/2"

BC-Bar Chair

BCP-Bar Chair with Plate


Available in heights of 3/4" 1" and 1-1/2"



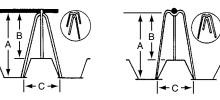


SHC-Special Laced High Chair

Horizontal lace on chair 12" and less. Diagonal cross laces standard on heights over 12"-

CHC-Continuous High Chair

CHCU-Cont. High Chair Upper CHCP-Cont. High with Plate

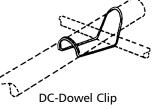

Manufactured to Order

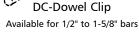
HBC-Heavy Bar Chair Available in heights of 3/4" 1" and 1-1/2"

Available in heights of 2" to 20" in increments of 1/4" in 5' lengths

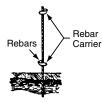
CHC-Continuous High Chairs for Metal Decking

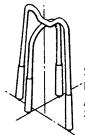
Available in heights of 2" to 9" with leg spacing of 4-1/2" to 10"


CHC-Continuous High Chairs for Metal Decking Available in heights of 2" to 9" with leg spacing of 4-1/2" to 10"



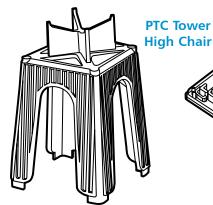
PC-Precast Chair. Made from type 430 Stainless Steel.


BC-Bar Clip Available for 1/2" to 1-5/8" bars

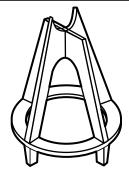


RC-Rebar Carrier Available for No. 5 and 6 rebar

Drive Rebar Support in Ground and Attach Rebar Carrier

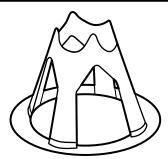

SLHC-Straight Leg High Chair Available in heights of 2-1/4", 2-1/2" and 2-3/4"

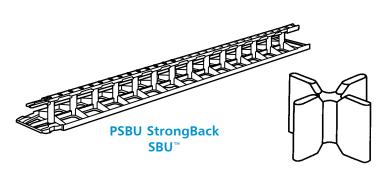
62



PBC Tower Bar Chair

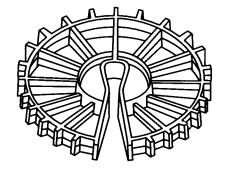
PTC Tower High Chair


PTCSB Tower Chair Sand Plate


PEZ E-Z Chair


PSP Sand Plate

PCC Castle Chair



PXC X-Chair

PLW E-Z Lok Wheel

PSW Space Wheel

04/10

Formliners

Formliners

Easy to install and easy to strip, Dayton Superior Formliners are available in Single Use, Medium Reuse and Heavy Reuse. Repeat patterns eliminate seam lines.

For complete details, request our full color handbook describing new Formliner products from Dayton Superior, with photos, drawings and architectural specifications. Dayton Superior's Formliners are offered in more than 500 contemporary designs and three weights.

Notes and Sketches

